Profile of the unfolded protein response in rat cerebellar cortical development

大鼠小脑皮质发育中未折叠蛋白反应的概况

阅读:5
作者:Michelle Naughton, Jill McMahon, Sinéad Healy, Una FitzGerald

Abstract

The unfolded protein response (UPR) has been reported during normal development of cortical neurons and cerebellar white matter and may also contribute to the pathogenesis of neurological conditions, such as Marinesco-Sjogren syndrome and Borna virus infection, which result in cerebellar defects. The UPR is initiated when the processing capacity of the endoplasmic reticulum (ER) is overwhelmed. Misfolded proteins accumulate and can activate ER stress sensors; PKR-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1 (IRE1), activated transcription factor 6 (ATF6) and their downstream targets glucose-regulated protein 78 (GRP78), glucose-regulated protein 94 (GRP94) and protein disulfide isomerase (PDI). In order to provide a fuller appreciation of the possible importance of ER stress-associated proteins in the context of cerebellar disease, we have profiled the expression of ER stress sensors and their downstream targets in the developing cerebellar cortex in postnatal rat. Activation of PERK and IRE1 stress sensors was observed for the first time in normally developing granule cell precursors. A second proliferative pPERK-positive population was also detected in the internal granular layer (IGL). In general, the density of UPR protein-positive cells was found to decrease significantly when profiles in early and late postnatal ages were compared. These data may be relevant to studies of medulloblastoma and warrant further investigation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。