Intracellular iron uptake is favored in Hfe-KO mouse primary chondrocytes mimicking an osteoarthritis-related phenotype

模仿骨关节炎相关表型的 Hfe-KO 小鼠原代软骨细胞有利于细胞内铁的吸收

阅读:6
作者:Márcio Simão, Paulo J Gavaia, António Camacho, Graça Porto, I Jorge Pinto, Hang-Korng Ea, M Leonor Cancela

Abstract

HFE-hemochromatosis is a disease characterized by a systemic iron overload phenotype mainly associated with mutations in the HFE protein (HFE) gene. Osteoarthritis (OA) has been reported as one of the most prevalent complications in HFE-hemochromatosis patients, but the mechanisms associated with its onset and progression remain incompletely understood. In this study, we have characterized the response to high iron concentrations of a primary culture of articular chondrocytes isolated from newborn Hfe-KO mice and compared the results with that of a similar experiment developed in cells from C57BL/6 wild-type (wt) mice. Our data provide evidence that both wt- and Hfe-KO-derived chondrocytes, when exposed to 50 μM iron, develop characteristics of an OA-related phenotype, such as an increased expression of metalloproteases, a decreased extracellular matrix production, and a lower expression level of aggrecan. In addition, Hfe-KO cells also showed an increased expression of iron metabolism markers and MMP3, indicating an increased susceptibility to intracellular iron accumulation and higher levels of chondrocyte catabolism. Accordingly, upon treatment with 50 μM iron, these chondrocytes were found to preferentially differentiate toward hypertrophy with increased expression of collagen I and transferrin and downregulation of SRY (sex-determining region Y)-box containing gene 9 (Sox9). In conclusion, high iron exposure can compromise chondrocyte metabolism, which, when simultaneously affected by an Hfe loss of function, appears to be more susceptible to the establishment of an OA-related phenotype.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。