Comparative proteomics: assessment of biological variability and dataset comparability

比较蛋白质组学:生物变异性和数据集可比性的评估

阅读:6
作者:Sa Rang Kim, Tuong Vi Nguyen, Na Ri Seo, Seunghup Jung, Hyun Joo An, David A Mills, Jae Han Kim

Background

Comparative proteomics in bacteria are often hampered by the differential nature of dataset quality and/or inherent biological deviations. Although common practice compensates by reproducing and normalizing datasets from a single sample, the degree of certainty is limited in comparison of multiple dataset. To surmount these limitations, we introduce a two-step assessment criterion using: (1) the relative number of total spectra (R TS ) to determine if two LC-MS/MS datasets are comparable and (2) nine glycolytic enzymes as internal standards for a more accurate calculation of relative amount of proteins. Lactococcus lactis HR279 and JHK24 strains expressing high or low levels (respectively) of green fluorescent protein (GFP) were used for the model system. GFP abundance was determined by spectral counting and direct fluorescence measurements. Statistical analysis determined relative GFP quantity obtained from our approach matched values obtained from fluorescence measurements.

Conclusions

Our two-step assessment demonstrates a useful approach to: (1) validate the comparability of two mass spectrometric datasets and (2) accurately calculate the relative amount of proteins between proteomic datasets.

Results

L. lactis HR279 and JHK24 demonstrates two datasets with an R TS value less than 1.4 accurately reflects relative differences in GFP levels between high and low expression strains. Without prior consideration of R TS and the use of internal standards, the relative increase in GFP calculated by spectral counting method was 3.92 ± 1.14 fold, which is not correlated with the value determined by the direct fluorescence measurement (2.86 ± 0.42 fold) with the p = 0.024. In contrast, 2.88 ± 0.92 fold was obtained by our approach showing a statistically insignificant difference (p = 0.95). Conclusions: Our two-step assessment demonstrates a useful approach to: (1) validate the comparability of two mass spectrometric datasets and (2) accurately calculate the relative amount of proteins between proteomic datasets.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。