Caffeine activates preferentially α1-isoform of 5'AMP-activated protein kinase in rat skeletal muscle

咖啡因优先激活大鼠骨骼肌中 5'AMP 活化蛋白激酶的 α1-异构体

阅读:4
作者:T Egawa, T Hamada, X Ma, K Karaike, N Kameda, S Masuda, N Iwanaka, T Hayashi

Aim

Caffeine activates 5'AMP-activated protein kinase (AMPK), a signalling intermediary implicated in the regulation of glucose, lipid and energy metabolism in skeletal muscle. Skeletal muscle expresses two catalytic α subunits of AMPK, α1 and α2, but the isoform specificity of caffeine-induced AMPK activation is unclear. The aim of this study was to determine which α isoform is preferentially activated by caffeine in vitro and in vivo using rat skeletal muscle.

Conclusion

Our results suggest that of the two α isoforms of AMPK, AMPKα1 is predominantly activated by caffeine via an energy-independent mechanism and that the activation of AMPKα1 increases glucose transport and ACC phosphorylation in skeletal muscle.

Methods

Rat epitrochlearis muscle was isolated and incubated in vitro in the absence or presence of caffeine. In another experiment, the muscle was dissected after intravenous injection of caffeine. Isoform-specific AMPK activity, the phosphorylation status of AMPKα Thr(172) and acetyl-CoA carboxylase (ACC) Ser(79) , the concentrations of ATP, phosphocreatine (PCr) and glycogen, and 3-O-methyl-d-glucose (3MG) transport activity were estimated.

Results

Incubation of isolated epitrochlearis muscle with 1 mm of caffeine for 15 min increased AMPKα1 activity, but not AMPKα2 activity; concentrations of ATP, PCr and glycogen were not affected. Incubation with 3 mm of caffeine activated AMPKα2 and reduced PCr and glycogen concentrations. Incubation with 1 mm of caffeine increased the phosphorylation of AMPK and ACC and enhanced 3MG transport. Intravenous injection of caffeine (5 mg kg(-1) ) predominantly activated AMPKα1 and increased 3MG transport without affecting energy status.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。