Opposite roles of Kindlin orthologs in cell survival and proliferation

Kindlin 直系同源物在细胞存活和增殖中发挥相反的作用

阅读:6
作者:Irina Zhevlakova, Luyang Xiong, Huan Liu, Tejasvi Dudiki, Alieta Ciocea, Eugene Podrez, Tatiana V Byzova

Conclusion

Kindlin ortologs and their interaction to cytoskeletal protein paxillin define the mechanisms of anchorage dependence. Our study identifies the key elements of the cell adhesion machinery in cell survival and tumour metastasis, proposing possible targets for tumour treatment.

Material and methods

To demonstrate the opposite roles of Kindlin's in cell survival we utilized in vivo and in vitro models and K3 and K2 knockdown and knockin cells. We used human lymphocytes from the K3 deficient patients in tumour model, K3 knockout and knockin macrophages and K2 knockout and knockin MEF cells for experiments in under conditions of adhesion and in suspension.

Methods

To demonstrate the opposite roles of Kindlin's in cell survival we utilized in vivo and in vitro models and K3 and K2 knockdown and knockin cells. We used human lymphocytes from the K3 deficient patients in tumour model, K3 knockout and knockin macrophages and K2 knockout and knockin MEF cells for experiments in under conditions of adhesion and in suspension.

Objective

It is unclear why adhesion-dependent cells such as epithelium undergo anoikis without anchorage, while adhesion-independent blood cells thrive in suspension. The adhesive machinery of these cells is similar, with the exception of Kindlin orthologs, Kindlin 2 (K2) and Kindlin 3 (K3). Here we address how Kindlins control cell survival and proliferation in anchorage-dependent and independent cells. Material and

Results

Depletion of K3 promotes cell proliferation and survival of anchorage-independent cells regardless of cell attachment. In contrast, the absence of K2 in anchorage-dependent cells accelerates apoptosis and limits proliferation. K3 deficiency promotes human lymphoma growth and survival in vivo. Kindlins' interaction with paxillin, is critical for their differential roles in cell anchorage. While disruption of K2-paxillin binding leads to increased apoptosis, the lack of K3-paxillin binding has an opposite effect in adhesion-independent cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。