Transient receptor potential channel TRPM4 favors oxidized low-density lipoprotein-induced coronary endothelial cell dysfunction via a mechanism involving ferroptosis

瞬时受体电位通道 TRPM4 通过涉及铁死亡的机制促进氧化低密度脂蛋白诱导的冠状动脉内皮细胞功能障碍

阅读:7
作者:Fengxiang Ye, Dongtao Liu, Junjie Zhang

Abstract

Accelerating the repair of damaged endothelium can effectively inhibit the progression of atherosclerosis (AS). Transient receptor potential channel TRPM4 is a non-selective cation channel activated by internal Ca2+, which is expressed in endothelial cells. This study aimed to reveal the potential role of TRPM4 in AS along with the mechanism. Human coronary artery endothelial cells (HCAECs) induced by ox-LDL was regarded as an in vitro model. The impacts of TRPM4 knockdown on cellular inflammation response, oxidative stress, normal endothelial function and lipid peroxidation were evaluated. Given that ferroptosis promotes AS progression, the effects of TRPM4 on intracellular iron ions and ferroptosis-related proteins was determined. Afterwards, HCAECs were treated with ferroptosis inducer erastin, and the influence of ferroptosis in the cellular model was revealed. TRPM4 was elevated in response to ox-LDL treatment in HCAECs. TRPM4 knockdown reduced the inflammation response, oxidative stress and lipid peroxidation caused by ox-LDL, and maintained the normal function of HCAECs. Erastin treatment destroyed the impacts of TRPM4 knockdown that are beneficial for cells to resist ox-LDL, showing the enhancement of the above adverse factors. Together, this study found that TRPM4 knockdown reduced ox-LDL-induced inflammation, oxidative stress, and dysfunction in HCAECs, possibly via a mechanism involving Fe2+ and ferroptosis-related proteins.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。