Neotuberostemonine and tuberostemonine ameliorate pulmonary fibrosis through suppressing TGF-β and SDF-1 secreted by macrophages and fibroblasts via the PI3K-dependent AKT and ERK pathways

新块茎百部碱和块茎百部碱通过 PI3K 依赖的 AKT 和 ERK 通路抑制巨噬细胞和成纤维细胞分泌的 TGF-β 和 SDF-1,从而改善肺纤维化

阅读:6
作者:San Fu, Xianrui Song, Yingying Hu, Qingwei Zhu, Xinmiao Lv, Xiaoyan Tang, Mian Zhang

Abstract

Activated fibroblasts and M2-polarized macrophages may contribute to the progression of pulmonary fibrosis by forming a positive feedback loop. This study was aimed to investigate whether fibroblasts and macrophages form this loop by secreting SDF-1 and TGF-β and the impacts of neotuberostemonine (NTS) and tuberostemonine (TS). Mice were intratracheally injected with 3 U·kg-1 bleomycin and orally administered with 30 mg·kg-1 NTS or TS. Primary pulmonary fibroblasts (PFBs) and MH-S cells (alveolar macrophages) were used in vitro. The animal experiments showed that NTS and TS improved fibrosis related indicators, inhibited fibroblast activation and macrophage M2 polarization, and reduced the levels of TGF-β and SDF-1 in alveolar lavage fluid. Cell experiments showed that TGF-β1 may activated fibroblasts into myofibroblasts secreting SDF-1 by activating the PI3K/AKT/HIF-1α and PI3K/PAK/RAF/ERK/HIF-1α pathways. It was also found for the first time that SDF-1 was able to directly polarize macrophages into M2 phenotype secreting TGF-β through the same pathways as mentioned above. Moreover, the results of the cell coculture confirmed that fibroblasts and macrophages actually developed a feedback loop to promote fibrosis, and the secretion of TGF-β and SDF-1 was crucial for maintaining this loop. NTS and TS may disturb this loop through inhibiting both the PI3K/AKT/HIF-1α and PI3K/PAK/RAF/ERK/HIF-1α pathways to improve pulmonary fibrosis. NTS and TS are stereoisomeric alkaloids with pyrrole[1,2-a]azapine skeleton, and their effect on improving pulmonary fibrosis may be largely attributed to their parent nucleus. Moreover, this study found that inhibition of both the AKT and ERK pathways is essential for maximizing the improvement of pulmonary fibrosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。