Myocyte enhancer factor-2 interacting transcriptional repressor (MITR) is a switch that promotes osteogenesis and inhibits adipogenesis of mesenchymal stem cells by inactivating peroxisome proliferator-activated receptor gamma-2

肌细胞增强因子-2 相互作用转录抑制因子 (MITR) 是一种开关,它通过灭活过氧化物酶体增殖激活受体 γ-2 来促进间充质干细胞的成骨作用并抑制其脂肪形成

阅读:7
作者:Ya-Huey Chen, Fang-Ling Yeh, Su-Peng Yeh, Haou-Tzong Ma, Shih-Chieh Hung, Mien-Chie Hung, Long-Yuan Li

Abstract

EZH2, a catalytic subunit of Polycomb-repressive complex 2 (PRC2), is a histone lysine methyltransferase that methylates lysine 27 of histone H3, resulting in gene silencing. It has been shown that EZH2 plays a pivotal role in fostering self-renewal and inhibiting the differentiation of embryonic stem cells. Mesenchymal stem cells (MSCs) can be induced to differentiate into adipogenic and osteogenic lineages, which are mutually exclusive. However, it is not clear whether the molecular events of EZH2-mediated epigenetic silencing may coordinate differentiation between osteoblasts and adipocytes. Disruption of the balance between adipogenesis and osteogenesis is associated with many diseases; thus, identifying a switch that determines the fate of MSC is critical. In this study, we used EZH2-ChIP-on-chip assay to identify differential EZH2 targets in the two differentiation stages on a genome-wide scale. After validating the targets, we found that myocyte enhancer factor-2 interacting transcriptional repressor (MITR)/HDAC9c was expressed in osteoblasts and greatly decreased in adipocytes. We demonstrated that MITR plays a crucial role in the acceleration of MSC osteogenesis and attenuation of MSC adipogenesis through interaction with peroxisome proliferator-activated receptor (PPAR) γ-2 in the nucleus of osteoblasts, which interrupts PPARγ-2 activity and prevents adipogenesis. Together, our results demonstrated that MITR plays a master switch role to balance osteogenic and adipogenic differentiation of MSCs through regulation of PPARγ-2 transcriptional activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。