miR-130a can predict response to temozolomide in patients with glioblastoma multiforme, independently of O6-methylguanine-DNA methyltransferase

miR-130a 可以预测多形性胶质母细胞瘤患者对替莫唑胺的反应,独立于 O6-甲基鸟嘌呤-DNA 甲基转移酶

阅读:6
作者:Huiyuan Chen, Xinyi Li, Wenbin Li, Huyong Zheng

Background

Currently, O6-methylguanine-DNA methyltransferase(MGMT) promoter methylation is the most convincing predictive biomarker for temozolomide (TMZ) response in patients with glioblastoma multiforme (GBM). However, technical obstacles prevent this biomarker from being applied widely. On the other hand, microRNAs (miRNAs) are easily investigated in the clinical setting using quantitative real-time polymerase chain reactions. This study aimed to identify miRNAs that could serve as predictive biomarkers for TMZ response.

Conclusions

Our data suggested that miR-130a could be a predictive marker for TMZ response in patients with GBM, independently of the mechanism by which MGMT acts as a biomarker. miR-130a could serve as a guide for treatment strategy selection in cases of GBM.

Methods

The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) databases were used to investigate the significance of associations between miRNA expression and overall survival (OS) in TMZ-treated patients with GBM. Cytotoxicity assays were used to validate the miRNAs' roles in the response of glioma cells to TMZ. Biological insights concerning the miRNAs were explored using gene set enrichment analysis (GSEA) and gene ontology (GO) analysis.

Results

miR-130a was found to be significantly associated with OS in TMZ-treated patients from TCGA and the CGGA. In contrast, miR-130a appeared to be unassociated with OS in patients who only received radiotherapy. The TMZ cytotoxicity assay showed that miR-130a over-expression could sensitize response to TMZ in glioma cells. GSEA and GO analysis indicated that lower miR-130a could generate a more extensive response to oxidative stress, which in turn could elevate Ape1 and mediate resistance to TMZ. In vitro experiment verified that cells with lower miR-130a express higher Ape1 under oxidative stress. Conclusions: Our data suggested that miR-130a could be a predictive marker for TMZ response in patients with GBM, independently of the mechanism by which MGMT acts as a biomarker. miR-130a could serve as a guide for treatment strategy selection in cases of GBM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。