Clinical and functional characterization of rare compound heterozygous mutations in the SERPINC1 gene causing severe thrombophilia

SERPINC1 基因罕见复合杂合突变导致严重血栓形成倾向的临床和功能特征

阅读:13
作者:Ke Zhang, Haiyue Zhang, Dandan Yu, Jingye Pan, Mingshan Wang, Haixiao Xie

Conclusion

These two mutations were responsible for the AT defects and clinical phenotypes of the proband. The p.Gly308Cys mutation could lead to proteasome-dependent degradation of the AT protein in the cytoplasm by altering local residue hydrophobicity. The c.318_319insT could eliminate aberrant transcripts by triggering nonsense-mediated mRNA degradation. Both mutations resulted in type I AT deficiency.

Methods

A total of 9 individuals from three generations were investigated. The mutations were identified by direct sequencing of SERPINC1. Multiple in silico tools were programmed to predict the conservation of mutations and the effect on the AT structure. The coagulation state was evaluated by the thrombin generation assay. Recombinant AT was overexpressed in HEK293T cells; the mRNA level was determined using RT-qPCR. Western blotting, ELISA, and immunocytofluorescence were applied to characterize the recombinant AT protein.

Results

The proband was a 26-year-old male who experienced recurrent venous thrombosis. He presented the type I deficiency with 33 % AT activity and a synchronized decrease in AT antigen. Genetic screening revealed that he carried a heterozygous c.318_319insT (p.Asn107*) in exon 2 and a heterozygous c.922G > T (p.Gly308Cys) in exon 5, both of which were completely conserved in homologous species and resulted in enhanced thrombin generation capability. Hydrophobicity analysis suggested that the p.Gly308Cys mutation may interfere with the hydrophobic state of residues 307-313. In vitro expression studies indicated that the levels of the recombinant protein AT-G308C decreased to 46.98 % ± 2.94 % and 41.35 % ± 1.48 % in transfected cell lysates and media, respectively. After treatment with a proteasome inhibitor (MG132), the quantity of AT-G308C protein in the cytoplasm was replenished to a level comparable to that of the wild type. The mRNA level of AT-N107* was significantly reduced and the recombinant protein AT-N107* was not detected in either the lysate or the culture media.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。