Endoplasmic reticulum stress caused by traumatic injury promotes cardiomyocyte apoptosis through acetylation modification of GRP78

创伤性内质网应激通过GRP78乙酰化修饰促进心肌细胞凋亡

阅读:7
作者:Zi Yan, Yufeng Liu, Bowen Yang, Wenhui Zhao, Yan Wang, Deping Wang, Jianguo Li, Xiangying Jiao, Jimin Cao

Abstract

Cardiomyocyte apoptosis is an important cause of trauma-induced secondary cardiac injury (TISCI), in which the endoplasmic reticulum stress (ERS)-mediated apoptosis signaling pathway is known to be first activated, but the mechanism remains unclear. In this study, rat models of traumatic injury are established by using the Noble-Collip trauma device. The expression of glucose-regulating protein 78 (GRP78, a molecular chaperone of the cardiomyocyte ER), acetylation modification of GRP78 and apoptosis of cardiomyocytes are determined. The results show that ERS-induced GRP78 elevation does not induce cardiomyocyte apoptosis in the early stage of trauma. However, with prolonged ERS, the GRP78 acetylation level is elevated, and the apoptosis of cardiomyocytes also increases significantly. In addition, in the early stage of trauma, the expression of histone acetyl-transferase (HAT) P300 is increased and that of histone deacetylase 6 (HDAC6) is decreased in cardiomyocytes. Inhibition of HDAC function could induce the apoptosis of traumatic cardiomyocytes by increasing the acetylation level of GRP78. Our present study demonstrates for the first time that post-traumatic protracted ERS can promote cardiomyocyte apoptosis by increasing the acetylation level of GRP78, which may provide an experimental basis for seeking early molecular events of TISCI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。