Interaction of biomechanics with extracellular matrix components in abdominal aortic aneurysm wall

腹主动脉瘤壁生物力学与细胞外基质成分的相互作用

阅读:9
作者:F Tanios, M W Gee, J Pelisek, S Kehl, J Biehler, V Grabher-Meier, W A Wall, H-H Eckstein, C Reeps

Conclusions

The present results indicate that in AAA, increased locally acting biomechanical conditions (stress and strain) involve increased synthesis of collagen and proteoglycans with increased failure tension. These findings confirm the presence of adaptive biological processes to maintain the mechanical stability of AAA wall.

Methods

Fifty-four tissue samples from 31 AAA patients (30♂; max. diameter Dmax 5.98 ± 1.42 cm) were excised from the aneurysm sac. Samples were divided for corresponding immunohistological and mechanical analysis. Collagen I and III, total collagen, elastin, and proteoglycans were quantified by computational image analysis of histological staining. Pre-surgical CT data were used for 3D segmentation of the AAA and calculation of mechanical conditions by advanced finite element analysis. AAA wall stiffness and strength were assessed by repeated cyclical, sinusoidal and destructive tensile testing.

Objective

Little is known about the interactions between extracellular matrix (ECM) proteins and locally acting mechanical conditions and material macroscopic properties in abdominal aortic aneurysm (AAA). In this study, ECM components were investigated with correlation to corresponding biomechanical properties and loads in aneurysmal arterial wall tissue.

Results

Amounts of collagen I, III, and total collagen were increased with higher local wall stress (p = .002, .017, .030, respectively) and strain (p = .002, .012, .020, respectively). AAA wall failure tension exhibited a positive correlation with collagen I, total collagen, and proteoglycans (p = .037, .038, .022, respectively). α-Stiffness correlated with collagen I, III, and total collagen (p = .011, .038, and .008), while β-stiffness correlated only with proteoglycans (p = .028). In contrast, increased thrombus thickness was associated with decreased collagen I, III, and total collagen (p = .003, .020, .015, respectively), and AAA diameter was negatively associated with elastin (p = .006). Conclusions: The present results indicate that in AAA, increased locally acting biomechanical conditions (stress and strain) involve increased synthesis of collagen and proteoglycans with increased failure tension. These findings confirm the presence of adaptive biological processes to maintain the mechanical stability of AAA wall.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。