Evaluation of the HC-04 cell line as an in vitro model for mechanistic assessment of changes in hepatic cytochrome P450 3A during adenovirus infection

评估 HC-04 细胞系作为腺病毒感染期间肝细胞色素 P450 3A 变化机制的体外模型

阅读:6
作者:Piyanuch Wonganan, Kristina Jonsson-Schmunk, Shellie M Callahan, Jin Huk Choi, Maria A Croyle

Abstract

HC-04 cells were evaluated as an in vitro model for mechanistic study of changes in the function of hepatic CYP3A during virus infection. Similar to in vivo observations, infection with a first generation recombinant adenovirus significantly inhibited CYP3A4 catalytic activity in an isoform-specific manner. Virus (MOI 100) significantly reduced expression of the retinoid X receptor (RXR) by 30% 96 hours after infection. Cytoplasmic concentrations of the pregnane X receptor (PXR) were reduced by 50%, whereas the amount of the constitutive androstane receptor (CAR) in the nuclear fraction doubled with respect to uninfected controls. Hepatocyte nuclear factor 4α (HNF-4α) and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) were also reduced by ∼70% during infection. Virus suppressed CYP3A4 activity in the presence of the PXR agonist rifampicin and did not affect CYP3A4 activity in the presence of the CAR agonist CITCO [6-(4-chlorophenyl) imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl)oxime], suggesting that virus-induced modification of PXR may be responsible for observed changes in hepatic CYP3A4. The HC-04 cell line is easy to maintain, and CYP3A4 in these cells was responsive to known inducers and suppressors. Dexamethasone (200 μM) and phenobarbital (500 μM) increased activity by 230 and 124%, whereas ketoconazole (10 μM) and lipopolysaccharide (LPS) (10 μg/ml) reduced activity by 90 and 92%, respectively. This suggests that HC-04 cells can be a valuable tool for mechanistic study of drug metabolism during infection and for routine toxicological screening of novel compounds prior to use in the clinic.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。