Potential synergic mechanism of Wutou-Gancao herb-pair by inhibiting efflux transporter P-glycoprotein

乌头甘草药对通过抑制外排转运体P-糖蛋白发挥潜在协同作用的机制

阅读:4
作者:Yufei He, Zihong Wei, Ying Xie, Xiulin Yi, Yong Zeng, Yazhuo Li, Changxiao Liu

Abstract

Wutou-Gancao herb-pair is extensively used to attenuate the toxicity and enhance the efficacy of aconite. In this study, potential synergic mechanism of the herb pair was investigated by utilizing multiple approaches. In silico and in vitro Caco-2 cell models were applied to study the potential binding mode of bioactive ingredients existing in liquorice with P-glycoprotein (P-gp), as well as the inhibition effects on P-gp. Additionally, anti-inflammatory activity of aconitine (AC) combined with active ingredients of liquorice, as well as pharmacokinetic patterns of AC after co-administration was investigated. Anti-inflammatory effect of AC (1 mg/kg) in rats was enhanced in combination with bioactive ingredients of liquorice (10 mg/kg). In the meanwhile, the exposure of AC in vivo was altered, in terms of Cmax and AUC. For instance, the Cmax and AUC were increased to 1.9 and 1.3 folds, respectively, when used in combination with liquiritigenin. The in silico study revealed the potential binding mode with outward facing conformation of P-gp. The resulting data obtained from transport of rhodamine-123 (Rh-123) across Caco-2 cell monolayer further indicated that the function of P-gp was inhibited by chemicals in liquorice. The synergic effect was therefore proposed to be attributed to inhibition of P-gp by liquorice since AC has been demonstrated to be the substrate of P-gp. The resuls revealed that potential synergic mechanism of Wutou-Gancao herb-pair by inhibiting function of key efflux transporter P-gp to enhance the exposure of AC in systematic circulation, and further the anti-inflammatory effect, which helps clarify the compatibility rationale of these two herbs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。