Hyaluronan-CD44 interaction activates stem cell marker Nanog, Stat-3-mediated MDR1 gene expression, and ankyrin-regulated multidrug efflux in breast and ovarian tumor cells

透明质酸-CD44 相互作用激活乳腺癌和卵巢癌细胞中的干细胞标志物 Nanog、Stat-3 介导的 MDR1 基因表达以及锚蛋白调节的多药外排

阅读:8
作者:Lilly Y W Bourguignon, Karine Peyrollier, Weiliang Xia, Eli Gilad

Abstract

Hyaluronan (HA) is a major glycosaminoglycan in the extracellular matrix whose expression is tightly linked to multidrug resistance and tumor progression. In this study we investigated HA-induced interaction between CD44 (a HA receptor) and Nanog (an embryonic stem cell transcription factor) in both human breast tumor cells (MCF-7 cells) and human ovarian tumor cells (SK-OV-3.ipl cells). Using a specific primer pair to amplify Nanog by reverse transcriptase-PCR, we detected the expression of Nanog transcript in both tumor cell lines. In addition, our results reveal that HA binding to these tumor cells promotes Nanog protein association with CD44 followed by Nanog activation and the expression of pluripotent stem cell regulators (e.g. Rex1 and Sox2). Nanog also forms a complex with the "signal transducer and activator of transcription protein 3" (Stat-3) in the nucleus leading to Stat-3-specific transcriptional activation and multidrug transporter, MDR1 (P-glycoprotein) gene expression. Furthermore, we observed that HA-CD44 interaction induces ankyrin (a cytoskeletal protein) binding to MDR1 resulting in the efflux of chemotherapeutic drugs (e.g. doxorubicin and paclitaxel (Taxol)) and chemoresistance in these tumor cells. Overexpression of Nanog by transfecting tumor cells with Nanog cDNA stimulates Stat-3 transcriptional activation, MDR1 overexpression, and multidrug resistance. Down regulation of Nanog signaling or ankyrin function (by transfecting tumor cells with Nanog small interfering RNA or ankyrin repeat domain cDNA) not only blocks HA/CD44-mediated tumor cell behaviors but also enhances chemosensitivity. Taken together, these findings suggest that targeting HA/CD44-mediated Nanog-Stat-3 signaling pathways and ankyrin/cytoskeleton function may represent a novel approach to overcome chemotherapy resistance in some breast and ovarian tumor cells displaying stem cell marker properties during tumor progression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。