RNA Sequencing and Co-expressed Long Non-coding RNA in Modern and Wild Wheats

现代小麦和野生小麦的 RNA 测序和共表达长链非编码 RNA

阅读:5
作者:Halise Busra Cagirici, Burcu Alptekin, Hikmet Budak

Abstract

There is an urgent need for the improvement of drought-tolerant bread and durum wheat. The huge and complex genome of bread wheat (BBAADD genome) stands as a vital obstruction for understanding the molecular mechanism underlying drought tolerance. However, tetraploid wheat (Triticum turgidum ssp., BBAA genome) is an ancestor of modern bread wheat and offers an important model for studying the drought response due to its less complex genome. Additionally, several wild relatives of tetraploid wheat have already shown a significant drought tolerance. We sequenced root transcriptome of three tetraploid wheat varieties with varying stress tolerance profiles, and built differential expression library of their transcripts under control and drought conditions. More than 5,000 differentially expressed transcripts were identified from each genotype. Functional characterization of transcripts specific to drought-tolerant genotype, revealed their association with osmolytes production and secondary metabolite pathways. Comparative analysis of differentially expressed genes and their non-coding RNA partners, long noncoding RNAs and microRNAs, provided valuable insight to gene expression regulation in response to drought stress. LncRNAs as well as coding transcripts share similar structural features in different tetraploid species; yet, lncRNAs slightly differ from coding transcripts. Several miRNA-lncRNA target pairs were detected as differentially expressed in drought stress. Overall, this study suggested an important pool of transcripts where their manipulations confer a better performance of wheat varieties under drought stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。