RNA-seq analysis and fluorescence imaging of melon powdery mildew disease reveal an orchestrated reprogramming of host physiology

瓜类白粉病的 RNA 测序分析和荧光成像揭示了宿主生理学的精心重编程

阅读:6
作者:Álvaro Polonio, Mónica Pineda, Rocío Bautista, Jesús Martínez-Cruz, María Luisa Pérez-Bueno, Matilde Barón, Alejandro Pérez-García

Abstract

The cucurbit powdery mildew elicited by Podosphaera xanthii is one of the most important limiting factors in cucurbit production. Our knowledge of the genetic and molecular bases underlying the physiological processes governing this disease is very limited. We used RNA-sequencing to identify differentially expressed genes in leaves of Cucumis melo upon inoculation with P. xanthii, using RNA samples obtained at different time points during the early stages of infection and their corresponding uninfected controls. In parallel, melon plants were phenotypically characterized using imaging techniques. We found a high number of differentially expressed genes (DEGs) in infected plants, which allowed for the identification of many plant processes that were dysregulated by the infection. Among those, genes involved in photosynthesis and related processes were found to be upregulated, whereas genes involved in secondary metabolism pathways, such as phenylpropanoid biosynthesis, were downregulated. These changes in gene expression could be functionally validated by chlorophyll fluorescence imaging and blue-green fluorescence imaging analyses, which corroborated the alterations in photosynthetic activity and the suppression of phenolic compound biosynthesis. The powdery mildew disease in melon is a consequence of a complex and multifaceted process that involves the dysregulation of many plant pathways such as primary and secondary metabolism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。