NO-sGC Pathway Modulates Ca2+ Release and Muscle Contraction in Zebrafish Skeletal Muscle

NO-sGC 通路调节斑马鱼骨骼肌中的 Ca2+ 释放和肌肉收缩

阅读:8
作者:Zhou Xiyuan, Rainer H A Fink, Matias Mosqueira

Abstract

Vertebrate skeletal muscle contraction and relaxation is a complex process that depends on Ca2+ ions to promote the interaction of actin and myosin. This process can be modulated by nitric oxide (NO), a gas molecule synthesized endogenously by (nitric oxide synthase) NOS isoforms. At nanomolar concentrations NO activates soluble guanylate cyclase (sGC), which in turn activates protein kinase G via conversion of GTP into cyclic GMP. Alternatively, NO post-translationally modifies proteins via S-nitrosylation of the thiol group of cysteine. However, the mechanisms of action of NO on Ca2+ homeostasis during muscle contraction are not fully understood and we hypothesize that NO exerts its effects on Ca2+ homeostasis in skeletal muscles mainly through negative modulation of Ca2+ release and Ca2+ uptake via the NO-sGC-PKG pathway. To address this, we used 5-7 days-post fecundation-larvae of zebrafish, a well-established animal model for physiological and pathophysiological muscle activity. We evaluated the response of muscle contraction and Ca2+ transients in presence of SNAP, a NO-donor, or L-NAME, an unspecific NOS blocker in combination with specific blockers of key proteins of Ca2+ homeostasis. We also evaluate the expression of NOS in combination with dihydropteridine receptor, ryanodine receptor and sarco/endoplasmic reticulum Ca2+ ATPase. We concluded that endogenous NO reduced force production through negative modulation of Ca2+ transients via the NO-sGC pathway. This effect could be reversed using an unspecific NOS blocker or sGC blocker.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。