Development and Clinical Validation of RT-LAMP-Based Lateral-Flow Devices and Electrochemical Sensor for Detecting Multigene Targets in SARS-CoV-2

基于 RT-LAMP 的横向流动装置和电化学传感器的开发及临床验证,用于检测 SARS-CoV-2 中的多基因靶标

阅读:5
作者:Apoorva Saxena, Pawankumar Rai, Srishti Mehrotra, Samiya Baby, Suman Singh, Vikas Srivastava, Smriti Priya, Sandeep K Sharma

Abstract

Consistently emerging variants and the life-threatening consequences of SARS-CoV-2 have prompted worldwide concern about human health, necessitating rapid and accurate point-of-care diagnostics to limit the spread of COVID-19. Still, However, the availability of such diagnostics for COVID-19 remains a major rate-limiting factor in containing the outbreaks. Apart from the conventional reverse transcription polymerase chain reaction, loop-mediated isothermal amplification-based (LAMP) assays have emerged as rapid and efficient systems to detect COVID-19. The present study aims to develop RT-LAMP-based assay system for detecting multiple targets in N, ORF1ab, E, and S genes of the SARS-CoV-2 genome, where the end-products were quantified using spectrophotometry, paper-based lateral-flow devices, and electrochemical sensors. The spectrophotometric method shows a LOD of 10 agµL-1 for N, ORF1ab, E genes and 100 agµL-1 for S gene in SARS-CoV-2. The developed lateral-flow devices showed an LOD of 10 agµL-1 for all four gene targets in SARS-CoV-2. An electrochemical sensor developed for N-gene showed an LOD and E-strip sensitivity of log 1.79 ± 0.427 pgµL-1 and log 0.067 µA/pg µL-1/mm2, respectively. The developed assay systems were validated with the clinical samples from COVID-19 outbreaks in 2020 and 2021. This multigene target approach can effectively detect emerging COVID-19 variants using combination of various analytical techniques at testing facilities and in point-of-care settings.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。