Sequential Amyloid-β Degradation by the Matrix Metalloproteases MMP-2 and MMP-9

基质金属蛋白酶 MMP-2 和 MMP-9 依次降解淀粉样β蛋白

阅读:4
作者:Mar Hernandez-Guillamon, Stephanie Mawhirt, Steven Blais, Joan Montaner, Thomas A Neubert, Agueda Rostagno, Jorge Ghiso

Abstract

Matrix metalloproteases (MMPs) MMP-2 and MMP-9 have been implicated in the physiological catabolism of Alzheimer's amyloid-β (Aβ). Conversely, their association with vascular amyloid deposits, blood-brain barrier disruption, and hemorrhagic transformations after ischemic stroke also highlights their involvement in pathological processes. To better understand this dichotomy, recombinant human (rh) MMP-2 and MMP-9 were incubated with Aβ40 and Aβ42, and the resulting proteolytic fragments were assessed via immunoprecipitation and quantitative mass spectrometry. Both MMPs generated Aβ fragments truncated only at the C terminus, ending at positions 34, 30, and 16. Using deuterated homologues as internal standards, we observed limited and relatively slow degradation of Aβ42 by rhMMP-2, although the enzyme cleaved >80% of Aβ40 during the 1st h of incubation. rhMMP-9 was significantly less effective, particularly in degrading Aβ(1-42), although the targeted peptide bonds were identical. Using Aβ(1-34) and Aβ(1-30), we demonstrated that these peptides are also substrates for both MMPs, cleaving Aβ(1-34) to produce Aβ(1-30) first and Aβ(1-16) subsequently. Consistent with the kinetics observed with full-length Aβ, rhMMP-9 degraded only a minute fraction of Aβ(1-34) and was even less effective in producing Aβ(1-16). Further degradation of Aβ(1-16) by either MMP-2 or MMP-9 was not observed even after prolonged incubation times. Notably, all MMP-generated C-terminally truncated Aβ fragments were highly soluble and did not exhibit fibrillogenic properties or induce cytotoxicity in human cerebral microvascular endothelial or neuronal cells supporting the notion that these truncated Aβ species are associated with clearance mechanisms rather than being key elements in the fibrillogenesis process.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。