Global gene expression profiles of subcutaneous adipose and muscle from glucose-tolerant, insulin-sensitive, and insulin-resistant individuals matched for BMI

与 BMI 匹配的葡萄糖耐受、胰岛素敏感和胰岛素抵抗个体的皮下脂肪和肌肉的整体基因表达谱

阅读:6
作者:Steven C Elbein, Philip A Kern, Neda Rasouli, Aiwei Yao-Borengasser, Neeraj K Sharma, Swapan K Das

Conclusions

Adipose tissue gene expression showed more differences between insulin-resistant versus insulin-sensitive groups than the expression of genes in muscle. We confirm the role of PPARGC1A in muscle and show some support for inflammation in adipose from European American subjects but find prominent roles for lipid metabolism in insulin sensitivity independent of obesity in both tissues.

Methods

A total of 62 nondiabetic individuals were chosen for extremes of insulin sensitivity (31 insulin-resistant and 31 insulin-sensitive subjects; 40 were European American and 22 were African American) and matched for age and obesity measures. Global gene expression profiles were determined and compared between ethnic groups and between insulin-resistant and insulin-sensitive participants individually and using gene-set enrichment analysis.

Objective

To determine altered gene expression profiles in subcutaneous adipose and skeletal muscle from nondiabetic, insulin-resistant individuals compared with insulin-sensitive individuals matched for BMI. Research design and

Results

African American and European American subjects differed in 58 muscle and 140 adipose genes, including many inflammatory and metabolically important genes. Peroxisome proliferator-activated receptor γ cofactor 1A (PPARGC1A) was 1.75-fold reduced with insulin resistance in muscle, and fatty acid and lipid metabolism and oxidoreductase activity also were downregulated. Unexpected categories included ubiquitination, citrullination, and protein degradation. In adipose, highly represented categories included lipid and fatty acid metabolism, insulin action, and cell-cycle regulation. Inflammatory genes were increased in European American subjects and were among the top Kyoto Encyclopedia of Genes and Genomes pathways on gene-set enrichment analysis. FADS1, VEGFA, PTPN3, KLF15, PER3, STEAP4, and AGTR1 were among genes expressed differentially in both adipose and muscle. Conclusions: Adipose tissue gene expression showed more differences between insulin-resistant versus insulin-sensitive groups than the expression of genes in muscle. We confirm the role of PPARGC1A in muscle and show some support for inflammation in adipose from European American subjects but find prominent roles for lipid metabolism in insulin sensitivity independent of obesity in both tissues.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。