Role of mitochondrial fusion proteins MFN2 and OPA1 on lung cellular senescence in chronic obstructive pulmonary disease

线粒体融合蛋白 MFN2 和 OPA1 在慢性阻塞性肺病中肺细胞衰老中的作用

阅读:8
作者:Chenfei Li #, Qi Liu #, Qing Chang, Meiqin Xie, Jiali Weng, Xiaohui Wang, Mengnan Li, Jiani Chen, Yan Huang, Xiaohua Yang, Kai Wang, Na Zhang, Kian Fan Chung, Ian M Adcock, Hai Zhang, Feng Li

Background

Mitochondrial dysfunction and lung cellular senescence are significant features involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). Cigarette smoke (CS) stands as the primary contributing factor to COPD. This study examined mitochondrial dynamics, mitophagy and lung cellular senescence in COPD patients and investigated the effects of modulation of mitochondrial fusion [mitofusin2 (MFN2) and Optic atrophy 1 (OPA1)] on CS extract (CSE)-induced lung cellular senescence.

Conclusions

Impaired mitochondrial fusion, enhanced mitophagy and lung cellular senescence are observed in the lung of COPD patients. Up-regulation of MFN2 and OPA1 attenuates oxidative stress, mitophagy and lung cellular senescence, offering potential innovative therapeutic targets for COPD therapy.

Methods

Senescence-associated secretory phenotype (SASP) component mRNAs (IL-1β, IL-6, CXCL1 and CXCL8), mitochondrial morphology, mitophagy and mitochondria-related proteins (including phosphorylated-DRP1(p-DRP1), DRP1, MFF, MNF2, OPA1, PINK1, PARK2, SQSTM1/p62 and LC3b) and senescence-related proteins (including P16, H2A.X and Klotho) were measured in lung tissues or primary alveolar type II (ATII) cells of non-smokers, smokers and COPD patients. Alveolar epithelial (A549) cells were exposed to CSE with either pharmacologic inducer (leflunomide and BGP15) or genetic induction of MFN2 and OPA1 respectively.

Results

There were increases in mitochondrial number, and decreases in mitochondrial size and activity in lung tissues from COPD patients. SASP-related mRNAs, DRP1 phosphorylation, DRP1, MFF, PARK2, SQSTM1/p62, LC3B II/LC3B I, P16 and H2A.X protein levels were increased, while MFN2, OPA1, PINK1 and Klotho protein levels were decreased in lung tissues from COPD patients. Some similar results were identified in primary ATII cells of COPD patients. CSE induced increases in oxidative stress, SASP-related mRNAs, mitochondrial damage and dysfunction, mitophagy and cellular senescence in A549 cells, which were ameliorated by both pharmacological inducers and genetic overexpression of MFN2 and OPA1. Conclusions: Impaired mitochondrial fusion, enhanced mitophagy and lung cellular senescence are observed in the lung of COPD patients. Up-regulation of MFN2 and OPA1 attenuates oxidative stress, mitophagy and lung cellular senescence, offering potential innovative therapeutic targets for COPD therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。