PolyI:C-Induced, TLR3/RIP3-Dependent Necroptosis Backs Up Immune Effector-Mediated Tumor Elimination In Vivo

PolyI:C 诱导的、TLR3/RIP3 依赖的坏死性凋亡支持免疫效应子介导的体内肿瘤消除

阅读:5
作者:Ryo Takemura, Hiromi Takaki, Seiji Okada, Hiroaki Shime, Takashi Akazawa, Hiroyuki Oshiumi, Misako Matsumoto, Takanori Teshima, Tsukasa Seya

Abstract

Double-stranded RNA directly acts on fibroblast and myeloid lineages to induce necroptosis as in TNFα. Here, we investigated whether this type of cell death occurred in cancer cells in response to polyinosinic-polycytidylic acid (polyI:C) and the pan-caspase inhibitor z-Val-Ala-Asp fluromethyl ketone (zVAD). We found that the colon cancer cell line CT26 is highly susceptible to necroptosis, as revealed by staining with annexin V/propidium iodide. CT26 cells possess RNA sensors, TLR3 and MDA5, which are upregulated by interferon (IFN)-inducing pathways and linked to receptor-interacting protein kinase (RIP) 1/3 activation via TICAM-1 or MAVS adaptor, respectively. Although exogenously added polyI:C alone marginally induced necroptosis in CT26 cells, a combined regimen of polyI:C and zVAD induced approximately 50% CT26 necroptosis in vitro without secondary effects of TNFα or type I IFNs. CT26 necroptosis depended on the TLR3-TICAM-1-RIP3 axis in the tumor cells to produce reactive oxygen species, but not on MDA5, MAVS, or the caspases/inflammasome activation. However, the RNA-derived necroptosis was barely reproduced in vivo in a CT26 tumor-implanted Balb/c mouse model with administration of polyI:C + zVAD. Significant shrinkage of CT26 tumors was revealed only when polyI:C (100 μg) was injected intraperitoneally and zVAD (1 mg) subcutaneously into tumor-bearing mice that were depleted of cytotoxic T lymphocytes and natural killer cells. The results were confirmed with immune-compromised mice with no lymphocytes. Although necroptosis-induced tumor growth retardation appears mechanistically complicated and dependent on the injection routes of polyI:C and zVAD, anti-caspase reagent directed to tumor cells will make RNA adjuvant immunotherapy more effective by modulating the formation of the tumoricidal microenvironment and dendritic cell-inducing antitumor immune system.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。