Resveratrol Alleviates 27-Hydroxycholesterol-Induced Senescence in Nerve Cells and Affects Zebrafish Locomotor Behavior via Activation of SIRT1-Mediated STAT3 Signaling

白藜芦醇通过激活 SIRT1 介导的 STAT3 信号传导减轻 27-羟基胆固醇引起的神经细胞衰老并影响斑马鱼的运动行为

阅读:9
作者:Jiao Liu, Kailin Jiao, Qian Zhou, Jun Yang, Keke Yang, Chunyan Hu, Ming Zhou, Zhong Li

Abstract

The oxysterol 27-hydroxycholesterol (27HC) is the first identified endogenous selective estrogen receptor modulator (SERM), which like endogenous estrogen 17β-estradiol (E2) induces the proliferation of estrogen receptor- (ER-) positive breast cancer cells in vitro. However, 27HC differs from E2 in that it shows adverse effects in the nervous system. Our previous study confirmed that 27HC could induce neural senescence by activating phosphorylated signal transducer and activator of transcription, which E2 could not. The purpose of the present study is to investigate whether STAT3 acetylation was involved in 27HC-induced neural senescence. Microglia (BV2 cells) and rat pheochromocytoma cells (PC12 cells) were used in vitro to explore the effect of resveratrol (REV) on 27HC-induced neural senescence. Senescence-associated β-galactosidase (SA-β-Gal) staining was performed using an SA-β-Gal Staining Kit in cells and zebrafish larvae. Zebrafish were used in vivo to assess the effect of 27HC on locomotor behavior and aging. We found that 27HC could induce senescence in neural cells, and REV, which has been employed as a Sirtuin-1 (SIRT1) agonist, could attenuate 27HC-induced senescence by inhibiting STAT3 signaling via SIRT1. Moreover, in the zebrafish model, REV attenuated 27HC-induced locomotor behavior disorder and aging in the spinal cord of zebrafish larvae, which was also associated with the activation of SIRT1-mediated STAT3 signaling. Our findings unveiled a novel mechanism by which REV alleviates 27HC-induced senescence in neural cells and affects zebrafish locomotor behavior by activating SIRT1-mediated STAT3 signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。