Hindbrain dorsal vagal complex AMPK controls hypothalamic gluco-regulatory transmitter and counter-regulatory hormone responses to hypoglycemia

后脑背迷走神经复合体 AMPK 控制下丘脑葡萄糖调节递质和反调节激素对低血糖的反应

阅读:6
作者:Santosh K Mandal, Karen P Briski

Abstract

Pharmacologic activation of the hindbrain dorsal vagal complex energy sensor 5'-adenosine monophosphate-activated protein kinase (AMPK) causes site-specific adjustments in hypothalamic AMPK activity. DVC A2 noradrenergic neurons are a likely source of metabolo-sensory cues to downstream network components as they express substrate fuel-sensitive AMPK. This study investigated the hypothesis that DVC AMPK controls hypothalamic sensor, metabolic effector transmitter, and counter-regulatory hormone responses to insulin-induced hypoglycemia. Male rats were injected into the caudal fourth ventricle with the AMPK inhibitor compound C (Ccor vehicle before hypoglycemia. Arcuate (ARH), ventromedial (VMN), and dorsomedial (DMN) nuclei and lateral hypothalamic area (LHA) were micropunch-dissected for norepinephrine ELISA and Western blot analyses. Hypoglycemic stimulation of norepinephrine activity in each site was impeded by compound C. Hypoglycemia caused drug-revocable (ARH) or -refractory (VMN, DMN) reductions in AMPK, alongside hindbrain AMPK-dependent augmentation of phospho-AMPK expression in each location. Compound C prevented hypoglycemic augmentation of gluco-stimulatory ARH neuropeptide Y, VMN neuronal nitric oxide synthase, and LHA orexin-A expression, while hypoglycemic suppression of the catabolic neuron protein markers ARH pro-opiomelanocortin and VMN glutamate decarboxylase65/67 was respectively averted or unaffected by drug treatment. DMN RFamide-related peptide-1 and -3 profiles were correspondingly amplified or suppressed hindbrain AMPK-reliant mechanisms during hypoglycemia. Results show that DVC AMPK is required for hypoglycemic intensification of norepinephrine activity in characterized hypothalamic gluco-regulatory structures, and that this sensor regulates AMPK activation and metabolic effector transmission in those sites.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。