Inhibition of monoamine oxidase B prevents reactive astrogliosis and scar formation in stab wound injury model

抑制单胺氧化酶B可防止刺伤模型中的反应性星形胶质增生和疤痕形成

阅读:3
作者:Heejung Chun, Jiwoon Lim, Ki Duk Park, C Justin Lee

Abstract

Reactive astrocytes manifest molecular, structural, and functional alterations under various pathological conditions. We have previously demonstrated that the reactive astrocytes of the stab wound injury model (STAB) display aberrant cellular gamma-aminobutyric acid (GABA) content and tonic GABA release, whereas the active astrocytes under enriched environment (EE) express high levels of proBDNF. However, the role of monoamine oxidase B (MAO-B) in reactive astrogliosis and hypertrophy still remains unknown. Here, we investigate the role of MAO-B, a GABA-producing enzyme, in reactive astrogliosis in STAB. We observed that the genetic removal of MAO-B significantly reduced the hypertrophy, scar formation, and GABA production of reactive astrocytes, whereas the MAO-B overexpression under glial fibrillary acidic protein (GFAP) promoter enhanced the levels of GFAP and GABA. Furthermore, we found that one of the by-products of the MAO-B action, H2 O2 , but not GABA, was sufficient and necessary for the hypertrophy of reactive astrocytes. Notably, we identified two potent pharmacological tools to attenuate scar-forming astrogliosis-the recently developed reversible MAO-B inhibitor, KDS2010, and an H2 O2 scavenger, crisdesalazine (AAD-2004). Our results implicate that inhibiting MAO-B activity has dual beneficial effects in preventing astrogliosis and scar-formation under brain injury, and that the MAO-B/H2 O2 pathway can be a useful therapeutic target with a high clinical potential.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。