Suppressor of Fused regulates the proliferation of postnatal neural stem and precursor cells via a Gli3-dependent mechanism

Fused 抑制因子通过 Gli3 依赖机制调节出生后神经干细胞和前体细胞的增殖

阅读:5
作者:Hector G Gomez, Hirofumi Noguchi, Jesse Garcia Castillo, David Aguilar, Samuel J Pleasure, Odessa R Yabut

Abstract

The ventricular-subventricular zone (V-SVZ) of the forebrain is the source of neurogenic stem/precursor cells for adaptive and homeostatic needs throughout the life of most mammals. Here, we report that Suppressor of Fused (Sufu) plays a critical role in the establishment of the V-SVZ at early neonatal stages by controlling the proliferation of distinct subpopulations of stem/precursor cells. Conditional deletion of Sufu in radial glial progenitor cells (RGCs) at E13.5 resulted in a dramatic increase in the proliferation of Sox2+ Type B1 cells. In contrast, we found a significant decrease in Gsx2+ and a more dramatic decrease in Tbr2+ transit amplifying cells (TACs) indicating that innate differences between dorsal and ventral forebrain derived Type B1 cells influence Sufu function. However, many precursors accumulated in the dorsal V-SVZ or failed to survive, demonstrating that despite the over-proliferation of Type B1 cells, they are unable to transition into functional differentiated progenies. These defects were accompanied by reduced Gli3 expression and surprisingly, a significant downregulation of Sonic hedgehog (Shh) signaling. Therefore, these findings indicate a potential role of the Sufu-Gli3 regulatory axis in the neonatal dorsal V-SVZ independent of Shh signaling in the establishment and survival of functional stem/precursor cells in the postnatal dorsal V-SVZ.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。