An Amide Alkaloid Isolated from Ephedra sinica Ameliorates OVA-Induced Allergic Asthma by Inhibiting Mast Cell Activation and Dendritic Cell Maturation

从麻黄中分离的一种酰胺生物碱通过抑制肥大细胞活化和树突状细胞成熟改善 OVA 诱发的过敏性哮喘

阅读:10
作者:Jufang Jia, Mengnan Zeng, Denghui Zhu, Xinmian Jiao, Beibei Zhang, Ruolan Yang, Weisheng Feng, Xiaoke Zheng

Abstract

Asthma, which is a chronic inflammatory disease of the airways, is usually caused by allergens in which various structures and immune cells are involved. Ephedra sinica, the most commonly used Chinese medicine, has significant clinical effects on asthma, but its components are complex and the mechanism of action has not been fully elucidated. Among its components, we identified an amide alkaloid (EB-A) and investigated its anti-asthmatic activity and the underlying mechanisms. In this study, we replicated an OVA-sensitized/challenged allergic asthma mouse model, and divided the mice into a model (OVA) group, positive drug (Y, 0.5 mg/kg/day) group, and EB-A treatment with low (Low, 10 mg/kg/day) and high dose (High, 20 mg/kg/day) groups. Asthma-related features were analyzed through the airway hyperresponsiveness (AHR), cough and wheeze indexes, allergen-specific IgE, prostaglandin D2 (PDG2), and lung histology in mice. The levels of apoptosis and reactive oxygen species (ROS) in the primary lung cells, cytokines in the serum and broncho-alveolar lavage fluid (BALF), and proteinase-activated receptor-2 (PAR2) pathway activation in the lung tissue were measured to evaluate the inflammatory injury and lung epithelial barrier damage in the mice. Dendritic cell (DC) maturation and mast cell (MC) activation were verified in vitro and in vivo. Furthermore, the effect of a PAR2 activation in lung epithelial cells on the maturation of DCs was evaluated by the co-culture system of (human bronchial epithelial cell lines) 16HBE and bone marrow-derived dendritic cells (BMDCs). The results showed that EB-A inhibited the typical asthmatic phenotypes, as well as lung injury and inflammation, MC activation and degranulation, and DC maturation in the OVA-sensitized/challenged BALB/c mice. In addition, EB-A inhibited the expression of PAR2 in the lung epithelial cells and significantly interfered with the maturation of DCs after inhibiting PAR2. Taken together, our study firstly demonstrated that EB-A could ameliorate OVA-induced allergic asthma by inhibiting MC activation and DC maturation, and the molecular mechanism of EB-A's anti-asthmatic activity might be mediated by inhibiting PAR2. Our data provide a molecular justification for the use of EB-A in the treatment of allergic asthma.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。