A tunable L-arabinose-inducible expression plasmid for the acetic acid bacterium Gluconobacter oxydans

适用于乙酸菌氧化葡糖杆菌的可调节 L-阿拉伯糖诱导表达质粒

阅读:7
作者:Philipp Moritz Fricke, Tobias Link, Jochem Gätgens, Christiane Sonntag, Maike Otto, Michael Bott, Tino Polen

Abstract

The acetic acid bacterium (AAB) Gluconobacter oxydans incompletely oxidizes a wide variety of carbohydrates and is therefore used industrially for oxidative biotransformations. For G. oxydans, no system was available that allows regulatable plasmid-based expression. We found that the L-arabinose-inducible PBAD promoter and the transcriptional regulator AraC from Escherichia coli MC4100 performed very well in G. oxydans. The respective pBBR1-based plasmids showed very low basal expression of the reporters β-glucuronidase and mNeonGreen, up to 480-fold induction with 1% L-arabinose, and tunability from 0.1 to 1% L-arabinose. In G. oxydans 621H, L-arabinose was oxidized by the membrane-bound glucose dehydrogenase, which is absent in the multi-deletion strain BP.6. Nevertheless, AraC-PBAD performed similar in both strains in the exponential phase, indicating that a gene knockout is not required for application of AraC-PBAD in wild-type G. oxydans strains. However, the oxidation product arabinonic acid strongly contributed to the acidification of the growth medium in 621H cultures during the stationary phase, which resulted in drastically decreased reporter activities in 621H (pH 3.3) but not in BP.6 cultures (pH 4.4). These activities could be strongly increased quickly solely by incubating stationary cells in D-mannitol-free medium adjusted to pH 6, indicating that the reporters were hardly degraded yet rather became inactive. In a pH-controlled bioreactor, these reporter activities remained high in the stationary phase (pH 6). Finally, we created a multiple cloning vector with araC-PBAD based on pBBR1MCS-5. Together, we demonstrated superior functionality and good tunability of an AraC-PBAD system in G. oxydans that could possibly also be used in other AAB. KEY POINTS: • We found the AraC-PBAD system from E. coli MC4100 was well tunable in G. oxydans. • In the absence of AraC or l-arabinose, expression from PBAD was extremely low. • This araC-PBAD system could also be fully functional in other acetic acid bacteria.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。