Maternal Wnt/STOP signaling promotes cell division during early Xenopus embryogenesis

母体 Wnt/STOP 信号促进非洲爪蟾早期胚胎发生过程中的细胞分裂

阅读:7
作者:Ya-Lin Huang, Zeinab Anvarian, Gabriele Döderlein, Sergio P Acebron, Christof Niehrs

Abstract

During Xenopus development, Wnt signaling is thought to function first after midblastula transition to regulate axial patterning via β-catenin-mediated transcription. Here, we report that Wnt/glycogen synthase kinase 3 (GSK3) signaling functions posttranscriptionally already in mature oocytes via Wnt/stabilization of proteins (STOP) signaling. Wnt signaling is induced in oocytes after their entry into meiotic metaphase II and declines again upon exit into interphase. Wnt signaling inhibits Gsk3 and thereby protects proteins from polyubiquitination and degradation in mature oocytes. In a protein array screen, we identify a cluster of mitotic effector proteins that are polyubiquitinated in a Gsk3-dependent manner in Xenopus. Consequently inhibition of maternal Wnt/STOP signaling, but not β-catenin signaling, leads to early cleavage arrest after fertilization. The results support a novel role for Wnt signaling in cell cycle progression independent of β-catenin.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。