Activation of MEK1/2/Nrf-2 Signaling Pathway by Epstein-Barr Virus-Latent Membrane Protein 1 Enhances Autophagy and Cisplatin Resistance in T-Cell Lymphoma

Epstein-Barr 病毒潜伏膜蛋白 1 激活 MEK1/2/Nrf-2 信号通路增强 T 细胞淋巴瘤的自噬和顺铂耐药性

阅读:5
作者:Xintao Jia, Qiuyu He, Mei Zeng, Yuhua Chen, Yan Liu

Abstract

Epstein-Barr virus-latent membrane protein 1 (EBV-LMP1) was associated with lymphoma, but its specific mechanism is still controversial. The study is aimed at studying the regulation of lymphoma resistance by EBV-LMP1 through the MEK1/2/Nrf-2 signaling pathway. First, LMP1 was knocked down in EBV-positive SNK-6 cells and overexpressed in EBV-negative KHYG-1 cells. First, we found that overexpression of LMP1 significantly promoted the resistance of KHYG-1 cells to cisplatin (DDP), which was related to increased autophagy in the cells. In contrast, knockdown of LMP1 expression in SNK-6 cells promoted cellular sensitivity to DDP and reduced the autophagy of cells after DDP treatment. Moreover, specific inhibition of autophagy in KHYG-1 cells significantly attenuated the resistance to DDP caused by overexpression of LMP1, but treatment with rapamycin in SNK-6 cells significantly promoted the autophagy in the cells. Subsequently, overexpression of LMP1 promoted the activation of the MEK1/2-Nrf2 pathway in KYHG-1 cells, whereas knockdown of LMP1 in SNK-6 cells inhibited the activation of the MEK1/2-Nrf2 pathway. Inhibition of MEK1/2/Nrf-2 blocked the promoting effects of LMP1 on lymphoma cell resistance. In conclusion, EBV-LMP1 promotes cell autophagy after DDP treatment by activating the MEK1/2/Nrf-2 signaling pathway in lymphoma cells, thus, enhancing the resistance of lymphoma cells to DDP.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。