Generation and CRISPR/Cas9 editing of transformed progenitor B cells as a pseudo-physiological system to study DNA repair gene function in V(D)J recombination

转化的祖细胞 B 的生成和 CRISPR/Cas9 编辑作为拟生理系统来研究 V(D)J 重组中的 DNA 修复基因功能

阅读:4
作者:Hélène Lenden Hasse, Chloé Lescale, Joy J Bianchi, Wei Yu, Marie Bedora-Faure, Ludovic Deriano

Abstract

Antigen receptor gene assembly is accomplished in developing lymphocytes by the V(D)J recombination reaction, which can be separated into two steps: DNA cleavage by the recombination-activating gene (RAG) nuclease and joining of DNA double strand breaks (DSBs) by components of the nonhomologous end joining (NHEJ) pathway. Deficiencies for NHEJ factors can result in immunodeficiency and a propensity to accumulate genomic instability, thus highlighting the importance of identifying all players in this process and deciphering their functions. Bcl2 transgenic v-Abl kinase-transformed pro-B cells provide a pseudo-physiological cellular system to study V(D)J recombination. Treatment of v-Abl/Bcl2 pro-B cells with the Abl kinase inhibitor Imatinib leads to G1 cell cycle arrest, the rapid induction of Rag1/2 gene expression and V(D)J recombination. In this system, the Bcl2 transgene alleviates Imatinib-induced apoptosis enabling the analysis of induced V(D)J recombination. Although powerful, the use of mouse models carrying the Bcl2 transgene for the generation of v-Abl pro-B cell lines is time and money consuming. Here, we describe a method for generating v-Abl/Bcl2 pro-B cell lines from wild type mice and for performing gene knock-out using episomal CRISPR/Cas9 targeting vectors. Using this approach, we generated distinct NHEJ-deficient pro-B cell lines and quantified V(D)J recombination levels in these cells. Furthermore, this methodology can be adapted to generate pro-B cell lines deficient for any gene suspected to play a role in V(D)J recombination, and more generally DSB repair.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。