Metformin protects against abdominal aortic aneurysm by Atg7-induced autophagy

二甲双胍通过 Atg7 诱导的自噬预防腹主动脉瘤

阅读:8
作者:Jingjing Guo, Zhu Wang, Ming Xue, Lei Mi, Mengpeng Zhao, Chao Ma, Jian Wu, Xinqiang Han

Background

Abdominal aortic aneurysm (AAA) is a pathological dilation of the abdominal aorta. It is often asymptomatic, yet it has a high susceptibility to rupture. Our previous study showed that metformin protected against the pathophysiology of AAA by reducing the activation of the PI3K/AKT/mTOR pathway. Objectives: To investigate the potential involvement of the autophagy-related pathways in AAA and the ability of metformin to modulate these effects. Material and

Conclusions

Metformin reduced autophagy in AAA and this effect was mediated by Atg7, suggesting that Atg7 is a potential downstream effector of metformin in protecting against the pathophysiology of AAA.

Material and methods

The expression of autophagy-related proteins was detected with western blot in patients with AAA. Angiotensin II (Ang-II) was also used to construct an AAA model in mice and in vascular smooth muscle cells (VSMCs). The expression of Atg7 and Atg4 was determined using western blot assay. The Atg7 expression was regulated by overexpressed plasmid, siRNA (small interfering RNA), or metformin, and cell proliferation, migration, apoptosis and autophagy caused by Ang-II were examined.

Methods

The expression of autophagy-related proteins was detected with western blot in patients with AAA. Angiotensin II (Ang-II) was also used to construct an AAA model in mice and in vascular smooth muscle cells (VSMCs). The expression of Atg7 and Atg4 was determined using western blot assay. The Atg7 expression was regulated by overexpressed plasmid, siRNA (small interfering RNA), or metformin, and cell proliferation, migration, apoptosis and autophagy caused by Ang-II were examined.

Results

Autophagy-related proteins were increased in patients with AAA. The Ang-II also induced the expression of Atg7, and metformin reversed this effect both in vivo and in vitro. The suppression of Atg7 inhibited cell proliferation and cell migration, and reduced cell apoptosis and autophagy, while the overexpression of Atg7 enhanced cell proliferation and migration, and induced cell apoptosis and autophagy. Furthermore, Atg7 regulated the expression of the autophagy-related protein in Ang-II treated VSMCs. The Atg7-mediated autophagy was also attenuated by metformin. Conclusions: Metformin reduced autophagy in AAA and this effect was mediated by Atg7, suggesting that Atg7 is a potential downstream effector of metformin in protecting against the pathophysiology of AAA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。