Alcohol Reduces Arterial Remodeling by Inhibiting Sonic Hedgehog-Stimulated Stem Cell Antigen-1 Positive Progenitor Stem Cell Expansion

酒精通过抑制音猬因子刺激的干细胞抗原 1 阳性祖干细胞扩增来减少动脉重塑

阅读:6
作者:Emma Fitzpatrick, Xu Han, Weimin Liu, Eoin Corcoran, Denise Burtenshaw, David Morrow, Jay-Christian Helt, Paul A Cahill, Eileen M Redmond

Background

Cell and molecular mechanisms mediating the cardiovascular effects of alcohol are not fully understood. Our

Conclusions

EtOH reduces SHh-responsive Sca1+ progenitor cell myogenic differentiation/expansion in vitro and during arterial remodeling in response to ligation injury in vivo. Regulation of vascular Sca1+ progenitor cells in this way may be an important novel mechanism contributing to alcohol's cardiovascular protective effects.

Methods

Partial ligation or sham operation of the left carotid artery was performed in transgenic Sca1-enhanced green fluorescent protein (eGFP) mice gavaged with or without "daily moderate" EtOH.

Results

The EtOH group had reduced adventitial thickening and less neointimal formation, compared to ligated controls. There was expansion of eGFP-expressing (i.e., Sca1+ ) cells in remodeled vessels postligation (day 14), especially in the neo intima. EtOH treatment reduced the number of Sca1+ cells in ligated vessel cross-sections concomitant with diminished remodeling, compared to control ligated vessels. Moreover, EtOH attenuated SHh signaling in injured carotids as determined by immunohistochemical analysis of the target genes patched 1 and Gli2, and RT-PCR of whole-vessel Gli2 mRNA levels. Intraperitoneal injection of ligated Sca1-eGFP mice with the SHh signaling inhibitor cyclopamine diminished SHh target gene expression, reduced the number of Sca1+ cells, and ameliorated carotid remodeling. EtOH treatment of purified Sca1+ adventitial progenitor stem cells in vitro inhibited SHh signaling, and their rSHh-induced differentiation to vascular smooth muscle cells. Conclusions: EtOH reduces SHh-responsive Sca1+ progenitor cell myogenic differentiation/expansion in vitro and during arterial remodeling in response to ligation injury in vivo. Regulation of vascular Sca1+ progenitor cells in this way may be an important novel mechanism contributing to alcohol's cardiovascular protective effects.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。