Mitofusin-2 induced by exercise modifies lipid droplet-mitochondria communication, promoting fatty acid oxidation in male mice with NAFLD

运动诱导的线粒体融合蛋白-2 改变脂滴-线粒体通讯,促进患有 NAFLD 的雄性小鼠的脂肪酸氧化

阅读:7
作者:Juan Carlos Bórquez, Francisco Díaz-Castro, Francisco Pino-de La Fuente, Karla Espinoza, Ana María Figueroa, Inma Martínez-Ruíz, Vanessa Hernández, Iliana López-Soldado, Raúl Ventura, Joan Carles Domingo, Marta Bosch, Alba Fajardo, David Sebastián, Alejandra Espinosa, Albert Pol, Antonio Zorzano, Ví

Aim

The excessive accumulation of lipid droplets (LDs) is a defining characteristic of nonalcoholic fatty liver disease (NAFLD). The interaction between LDs and mitochondria is functionally important for lipid metabolism homeostasis. Exercise improves NAFLD, but it is not known if it has an effect on hepatic LD-mitochondria interactions. Here, we investigated the influence of exercise on LD-mitochondria interactions and its significance in the context of NAFLD. Approach and

Approach and results

Mice were fed high-fat diet (HFD) or HFD-0.1 % methionine and choline-deficient diet (MCD) to emulate simple hepatic steatosis or non-alcoholic steatohepatitis, respectively. In both models, aerobic exercise decreased the size of LDs bound to mitochondria and the number of LD-mitochondria contacts. Analysis showed that the effects of exercise on HOMA-IR and liver triglyceride levels were independent of changes in body weight, and a positive correlation was observed between the number of LD-mitochondria contacts and NAFLD severity and with the lipid droplet size bound to mitochondria. Cellular fractionation studies revealed that ATP-coupled respiration and fatty acid oxidation (FAO) were greater in hepatic peridroplet mitochondria (PDM) from HFD-fed exercised mice than from equivalent sedentary mice. Finally, exercise increased FAO and mitofusin-2 abundance exclusively in PDM through a mechanism involving the curvature of mitochondrial membranes and the abundance of saturated lipids. Accordingly, hepatic mitofusin-2 ablation prevented exercise-induced FAO in PDM. Conclusions: This study demonstrates that aerobic exercise has beneficial effects in murine NAFLD models by lessening the interactions between hepatic LDs and mitochondria, and by decreasing LD size, correlating with a reduced severity of NAFLD. Additionally, aerobic exercise increases FAO in PDM and this process is reliant on Mfn-2 enrichment, which modifies LD-mitochondria communication.

Conclusions

This study demonstrates that aerobic exercise has beneficial effects in murine NAFLD models by lessening the interactions between hepatic LDs and mitochondria, and by decreasing LD size, correlating with a reduced severity of NAFLD. Additionally, aerobic exercise increases FAO in PDM and this process is reliant on Mfn-2 enrichment, which modifies LD-mitochondria communication.

Results

Mice were fed high-fat diet (HFD) or HFD-0.1 % methionine and choline-deficient diet (MCD) to emulate simple hepatic steatosis or non-alcoholic steatohepatitis, respectively. In both models, aerobic exercise decreased the size of LDs bound to mitochondria and the number of LD-mitochondria contacts. Analysis showed that the effects of exercise on HOMA-IR and liver triglyceride levels were independent of changes in body weight, and a positive correlation was observed between the number of LD-mitochondria contacts and NAFLD severity and with the lipid droplet size bound to mitochondria. Cellular fractionation studies revealed that ATP-coupled respiration and fatty acid oxidation (FAO) were greater in hepatic peridroplet mitochondria (PDM) from HFD-fed exercised mice than from equivalent sedentary mice. Finally, exercise increased FAO and mitofusin-2 abundance exclusively in PDM through a mechanism involving the curvature of mitochondrial membranes and the abundance of saturated lipids. Accordingly, hepatic mitofusin-2 ablation prevented exercise-induced FAO in PDM. Conclusions: This study demonstrates that aerobic exercise has beneficial effects in murine NAFLD models by lessening the interactions between hepatic LDs and mitochondria, and by decreasing LD size, correlating with a reduced severity of NAFLD. Additionally, aerobic exercise increases FAO in PDM and this process is reliant on Mfn-2 enrichment, which modifies LD-mitochondria communication.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。