Targeting TEAD/YAP-transcription-dependent necrosis, TRIAD, ameliorates Huntington's disease pathology

靶向 TEAD/YAP 转录依赖性坏死(TRIAD)可改善亨廷顿病病理

阅读:8
作者:Ying Mao, Xigui Chen, Min Xu, Kyota Fujita, Kazumi Motoki, Toshikazu Sasabe, Hidenori Homma, Miho Murata, Kazuhiko Tagawa, Takuya Tamura, Julia Kaye, Steven Finkbeiner, Giovanni Blandino, Marius Sudol, Hitoshi Okazawa

Abstract

Neuronal cell death in neurodegenerative diseases is not fully understood. Here we report that mutant huntingtin (Htt), a causative gene product of Huntington’s diseases (HD) selectively induces a new form of necrotic cell death, in which endoplasmic reticulum (ER) enlarges and cell body asymmetrically balloons and finally ruptures. Pharmacological and genetic analyses revealed that the necrotic cell death is distinct from the RIP1/3 pathway-dependent necroptosis, but mediated by a functional deficiency of TEAD/YAP-dependent transcription. In addition, we revealed that a cell cycle regulator, Plk1, switches the balance between TEAD/YAP-dependent necrosis and p73/YAP-dependent apoptosis by shifting the interaction partner of YAP from TEAD to p73 through YAP phosphorylation at Thr77. In vivo ER imaging with two-photon microscopy detects similar ER enlargement, and viral vector-mediated delivery of YAP as well as chemical inhibitors of the Hippo pathway such as S1P recover the ER instability and necrosis in HD model mice. Intriguingly S1P completely stops the decline of motor function of HD model mice even after the onset of symptom. Collectively, we suggest approaches targeting the signalling pathway of TEAD/YAP-transcription-dependent necrosis (TRIAD) could lead to a therapeutic development against HD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。