CXCR4 and CCR5 ligands cooperate in monocyte and lymphocyte migration and in inhibition of dual-tropic (R5/X4) HIV-1 infection

CXCR4 和 CCR5 配体协同作用,促进单核细胞和淋巴细胞迁移,并抑制双嗜性 (R5/X4) HIV-1 感染

阅读:6
作者:Mieke Gouwy, Sofie Struyf, Nele Berghmans, Christophe Vanormelingen, Dominique Schols, Jo Van Damme

Abstract

One of the most important functions of chemokines and their receptors is the regulation of directional migration of leukocytes within tissues. In specific tissue compartments, cells are exposed to multiple chemokines presented in complex dimensional and temporal patterns. Therefore, a leukocyte requires the mechanisms to integrate the various directional signals it receives from different chemoattractants. In this study, we report that CCL3, CCL5, and CCL8, three potent mononuclear cell chemoattractants, are able to synergize with the homeostatic chemokine CXCL12 in the migration of CD14(+) monocytes, CD3(+) T-lymphocytes, or PHA-activated lymphoblasts. In addition, CCL5 augmented the CXCR4 ligand-driven ERK phosphorylation in mononuclear cells. Furthermore, the synergistic effect between CCL5 and CXCL12 in monocyte chemotaxis is inhibited in the presence of specific CCR1 antibody and AMD3100, but not by maraviroc. In HIV-1 infection assays, a combination of CXCL12 and CCL5 cooperated to inhibit the replication of the dual-tropic (R5/X4) HIV-1 HE strain. Finally, although the dual-tropic HIV-1 strain was barely suppressed by AMD3100 or maraviroc alone, HIV-1 infection was completely blocked by the combination of these two receptor antagonists. Our data demonstrate the cooperation between CCL5 and CXCL12, which has implications in migration of monocytes/lymphocytes during inflammation and in HIV-1 infection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。