Autografts for spinal fusion: osteogenic potential of laminectomy bone chips and bone shavings collected via high speed drill

用于脊柱融合的自体移植:通过高速钻收集椎板切除骨碎片和骨屑的成骨潜力

阅读:5
作者:Claudia Eder, Albert Chavanne, Jochen Meissner, Wolfgang Bretschneider, Alexander Tuschel, Philipp Becker, Michael Ogon

Abstract

In case of revision or minimal invasive spinal surgery, the amount of autograft possibly harvested from the lamina and the spinous processes is limited. Ekanayake and Shad (Acta Neurochir 152:651-653, 2010) suggest the application of bone shavings harvested via high speed burr additionally or instead, but so far no data regarding their osteogenic potential exist. Aim of the study was to compare the osteogenic potential of bone chips and high speed burr shavings, and to evaluate the applicability of bone shavings as an autograft for spinal fusion. Bone chips and shavings from 14 patients undergoing spinal decompression surgery were analyzed using in vitro tissue culture methods. Osteoblast emigration and proliferation, viability and mineralization were investigated and histological evaluation was performed. Bone chips from all patients showed successful osteoblast emigration after average 5.5 days. In contrast, only 57% of the corresponding bone shavings successfully demonstrated osteoblast emigration within an average time span of 14.8 days. Average osteoblast mobilisation was 1.25 × 10(6) cells per gram from bone chips and 1.73 × 10(5) cells per gram from the corresponding bone shavings. No difference was observed regarding cell viability, but population doubling times of bone chip cultures were significantly lower (50.5 vs. 121 h) and mineralization was observed in osteoblasts derived from bone chips only. Although some authors suggest the general applicability of laminectomy bone shavings as autografts for spinal fusion, autologous bone grafts obtained from laminectomy bone chips are superior in terms of cell delivery, cell proliferation and mineralization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。