The recycling of AMPA receptors/GABAa receptors is related to neuronal excitation/inhibition imbalance and may be regulated by KIF5A

AMPA 受体/GABAa 受体的循环与神经元兴奋/抑制失衡有关,可能受 KIF5A 调节

阅读:5
作者:Sijun Li, Hongmi Huang, Xin Wei, Lin Ye, Meigang Ma, Min Ling, Yuan Wu

Background

Excitation/inhibition imbalance (E/I imbalance), which involves an increase of alpha-amino-3-hydroxy-5-methyl-4-isoxazole (AMPA) receptors (AMPARs) and decrease of gamma-aminobutyric acid type A (GABA) type A receptors (GABAaRs) on the neuron surface, has been documented in the pathogenesis of seizures. Notably, it has been established that both the glutamate receptor subunit 2 (GluR2) of AMPARs and beta 2/3 subunits of GABAaRs (Gabrb2+3) participate in the recycling mechanism mediated by the kinesin heavy chain isoform 5A (KIF5A), which determines the number of neuron surface receptors. However, it remains unclear whether receptor recycling is involved in the pathogenesis of seizures.

Conclusions

The recycling of AMPA receptors/GABAa receptors is related to E/I imbalance and may be regulated by KIF5A.

Methods

Twelve adult male Sprague-Dawley rats were randomly allocated to the normal control (Ctl) group (n=6) and the pentylenetetrazol (PTZ)-induced seizure (Sez) group (n=6). The rats in the Ctl group were treated with saline. The rats in the Sez group received an intraperitoneal injection of PTZ at an initial dose of 40 mg/kg. Primary cultured neurons were obtained from newborn rats (24-hour-old). The neurons were exposed to magnesium-free (Mg2+-free) extracellular fluid for 3 hours to establish the seizure model in vitro. We detected the electrophysiology of the seizure model, the expression levels of KIF5A, GluR2, and Gabrb2+3, the recycling ratio of GluR2 and Gabrb2+3, the interaction between KIF5A and GluR2, and the interaction between KIF5A and Gabrb2+3.

Results

In the Sez group, the expression of GluR2 on the cell surface was increased and the expression of Gabrb2+3 on the cell surface was decreased. The amplitude and frequency of action potentials were significantly increased in the Mg2+-free group. The amplitude and decay time of AMPAR-mediated miniature excitatory postsynaptic currents were increased in the Mg2+-free group. The amplitude and decay time of miniature inhibitory postsynaptic currents were decreased in the Mg2+-free group. The recycling ratio of GluR2 was increased and the recycling ratio of Gabrb2+3 was decreased in the Mg2+-free group. The interaction between KIF5A and GluR2 was increased, and the interaction between KIF5A and Gabrb2+3 was decreased in the seizure model in vivo and in vitro. Conclusions: The recycling of AMPA receptors/GABAa receptors is related to E/I imbalance and may be regulated by KIF5A.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。