A Sulfonated All-Aromatic Polyamide for Heavy Metal Capture: A Model Study with Pb(II)

磺化全芳香聚酰胺用于重金属捕获:以 Pb(II) 为模型的研究

阅读:7
作者:Anna C Fraser, Jacob Yankey, Orlando Coronell, Theo J Dingemans

Abstract

Polyelectrolytes are widely used in heavy metal removal, finding applications as coagulants and flocculants. We compare the heavy metal removal capability of a water-soluble sulfonated semirigid polyamide, poly(2,2'-disulfonyl-4,4'-benzidine isophthalamide) (PBDI), with that of a well-known random-coil polymer, poly(sodium 4-styrenesulfonate) (PSS). Using lead (Pb(II)) as a model contaminant, both polymers precipitate out from solution at ~500 mg/L Pb(II) in water. The ability to remove Pb(II) from water was quantified using adsorption isotherms and fitted with Langmuir and Freundlich adsorption models. The sorption of Pb(II) by PSS fit the Langmuir model with a high degree of correlation (0.976 R2), but the sorption of Pb(II) by PBDI could not be accurately predicted using the Langmuir or Freundlich model. The sorption of Pb(II) by PBDI and PSS was compared by normalizing sorption by the number of sulfonate groups of each polymer and the ion exchange capacity (IEC), found by titration. We find that PBDI removes a greater amount of Pb(II) per gram of sorbent compared to PSS, 410 mg/g vs 260 mg/g, respectively, which cannot be accounted for by differences in IEC or number of sulfonate groups. Our findings confirm that the positioning of the sulfonate groups and the rigidity of the polymer backbone play an important role in how Pb(II) coordinates to the polymer prior to precipitating out from solution.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。