A biogenic secondary organic aerosol source of cirrus ice nucleating particles

卷云冰核粒子的生物二次有机气溶胶来源

阅读:6
作者:Martin J Wolf, Yue Zhang, Maria A Zawadowicz, Megan Goodell, Karl Froyd, Evelyn Freney, Karine Sellegri, Michael Rösch, Tianqu Cui, Margaux Winter, Larissa Lacher, Duncan Axisa, Paul J DeMott, Ezra J T Levin, Ellen Gute, Jonathan Abbatt, Abigail Koss, Jesse H Kroll, Jason D Surratt, Daniel J Cziczo

Abstract

Atmospheric ice nucleating particles (INPs) influence global climate by altering cloud formation, lifetime, and precipitation efficiency. The role of secondary organic aerosol (SOA) material as a source of INPs in the ambient atmosphere has not been well defined. Here, we demonstrate the potential for biogenic SOA to activate as depositional INPs in the upper troposphere by combining field measurements with laboratory experiments. Ambient INPs were measured in a remote mountaintop location at -46 °C and an ice supersaturation of 30% with concentrations ranging from 0.1 to 70 L-1. Concentrations of depositional INPs were positively correlated with the mass fractions and loadings of isoprene-derived secondary organic aerosols. Compositional analysis of ice residuals showed that ambient particles with isoprene-derived SOA material can act as depositional ice nuclei. Laboratory experiments further demonstrated the ability of isoprene-derived SOA to nucleate ice under a range of atmospheric conditions. We further show that ambient concentrations of isoprene-derived SOA can be competitive with other INP sources. This demonstrates that isoprene and potentially other biogenically-derived SOA materials could influence cirrus formation and properties.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。