Increased neurotoxicity of high-density lipoprotein secreted from murine reactive astrocytes deficient in a peroxisomal very-long-chain fatty acid transporter Abcd1

缺乏过氧化物酶体极长链脂肪酸转运体 Abcd1 的小鼠反应性星形胶质细胞分泌的高密度脂蛋白的神经毒性增强

阅读:5
作者:Naoki Fujitani, Tomoya Akashi, Masayoshi Saito, Masashi Morita, Takanori So, Kozo Oka

Abstract

X-linked adrenoleukodystrophy (X-ALD) is a genetic neurodegenerative disorder caused by pathogenic variants in ABCD1, resulting in the accumulation of very-long-chain fatty acids (VLCFAs) in tissues. The etiology of X-ALD is unclear. Activated astrocytes play a pathological role in X-ALD. Recently, reactive astrocytes have been shown to induce neuronal cell death via saturated lipids in high-density lipoprotein (HDL), although how HDL from reactive astrocytes exhibits neurotoxic effects has yet to be determined. In this study, we obtained astrocytes from wild-type and Abcd1-deficient mice. HDL was purified from the culture supernatant of astrocytes, and the effect of HDL on neurons was evaluated in vitro. To our knowledge, this study shows for the first time that HDL obtained from Abcd1-deficient reactive astrocytes induces a significantly higher level of lactate dehydrogenase (LDH) release, a marker of cell damage, from mouse primary cortical neurons as compared to HDL from wild-type reactive astrocytes. Notably, HDL from Abcd1-deficient astrocytes contained significantly high amounts of VLCFA-containing phosphatidylcholine (PC) and LysoPC. Activation of Abcd1-deficient astrocytes led to the production of HDL containing decreased amounts of PC with arachidonic acid in sn-2 acyl moieties and increased amounts of LysoPC, presumably through cytosolic phospholipase A2 α upregulation. These results suggest that compositional changes in PC and LysoPC in HDL, due to Abcd1 deficiency and astrocyte activation, may contribute to neuronal damage. Our findings provide novel insights into central nervous system pathology in X-ALD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。