Isoxanthohumol, a component of Sophora flavescens, promotes the activation of the NLRP3 inflammasome and induces idiosyncratic hepatotoxicity

苦参的成分异黄腐酚促进 NLRP3 炎症小体的激活并诱导特异质性肝毒性

阅读:5
作者:Li Lin, Yuanyuan Chen, Qiang Li, Guang Xu, Kaixin Ding, Lutong Ren, Wei Shi, Yan Wang, Zhiyong Li, Wenzhang Dai, Ziying Wei, Yan Yang, Zhaofang Bai, Xiaohe Xiao

Aim of the study

To assess the safety and risk of Sophora flavescens and to elucidate the relationship between Idiosyncratic drug-induced liver injury (IDILI) and the NOD-like receptor family protein 3 (NLRP3) inflammasome. Materials and

Conclusions

These results show that IXN enhances NLRP3 inflammasome activation by promoting the accumulation of ATP-induced mtROS and ASC oligomerization to cause IDILI, indicating that IXN may be a risk factor for liver injury caused by the clinical use of Sophora flavescens.

Methods

Western blot, Caspase-Glo® 1 Inflammasome Assay, ELISA kits, Flow cytometry and FLIPRT Tetra system were used to study the effect of isoxanthohumol (IXN) on the activation of NLRP3 inflammasome and its mechanism. Combined with the lipopolysaccharide-mediated susceptibility IDILI model in mice to evaluate the hepatotoxicity of IXN.

Results

IXN facilitates the activation of caspase-1 and secretion of interleukin (IL)-1β triggered by adenosine triphosphate (ATP), nigericin but not those induced by silicon dioxide and poly (I:C). Furthermore, the activation of NLR-family CARD-containing protein 4 (NLRC4) and the absent in melanoma 2 (AIM2) was not affected by IXN. Mechanistically, IXN promotes NLRP3-dependent apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC) oligomerization and the generation of mitochondrial reactive oxygen species (mtROS) triggered by ATP. The in vivo data showed that non-hepatotoxic doses of IXN resulted in increased levels of glutamate-pyruvate transaminase, glutamate-oxaloacetate transaminase, tumor necrosis factor and IL-1β in the serum and showed increased liver inflammation in the susceptible IDILI model mediated by lipopolysaccharide. Conclusions: These results show that IXN enhances NLRP3 inflammasome activation by promoting the accumulation of ATP-induced mtROS and ASC oligomerization to cause IDILI, indicating that IXN may be a risk factor for liver injury caused by the clinical use of Sophora flavescens.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。