LncRNA OTUD6B-AS1 promotes paclitaxel resistance in triple negative breast cancer by regulation of miR-26a-5p/MTDH pathway-mediated autophagy and genomic instability

LncRNA OTUD6B-AS1 通过调节 miR-26a-5p/MTDH 通路介导的自噬和基因组不稳定性促进三阴性乳腺癌对紫杉醇产生耐药性

阅读:4
作者:Peng-Ping Li, Rong-Guo Li, Yu-Qing Huang, Jin-Pian Lu, Wei-Jun Zhang, Zhen-Yu Wang

Abstract

Genomic instability (GIN) is pivotal in regulating tumor drug resistance, which blocked the treatment of triple negative breast cancer (TNBC). Although recent studies implied that non-coding RNA (ncRNA)-mediated autophagy abolishment promoted tumorigenesis by up-regulation of GIN, autophagy was known as a risk factor in tumor drug resistance. However, previous study also pointed that up-regulation of autophagy promoted GIN. Therefore, the relationship between autophagy and GIN is not clear, and more work is needed. And, if an ncRNA is identified to be a co-regulator of autophagy and GIN, it will be a potential therapy target of chemotherapy resistance in TNBC. In our study, we recognized both autophagy-GIN-associated microRNA (mi-26a-5p) by big data analysis, which was prognosis-correlated in breast cancer. Next, we identified the up-stream regulators (long non-coding RNA, lncRNA) and down-stream targets of miR-26a-5p by bioinformatics analysis (online public databases). Finally, we established lncRNA OTUD6B-AS1/miR-26a-5p/MTDH signaling pathway, and verified their functions by cytological, molecular biological and zoological experiments. In general, our study found (1) miR-26a-5p was a protective factor of breast cancer, while OTUD6B-AS1 and MTDH were risk factors; (2) OTUD6B-AS1 was the up-stream regulator of miR-26a-5p verified by luciferase; (3) up-regulation of miR-26a-5p and down-regulation of MTDH promoted cellular cytotoxicity of paclitaxel (PTX) in vitro and in vivo. (4) down-regulation of miR-26a-5p, overexpression of MTDH and OTUD6B-AS1 promoted autophagy and DNA damage; (5) up-regulation of OTUD6B-AS1 and MTDH inhibited DNA damage response (DDR) by inhibiting the phosphorylated activation of RAD51, ATR and ATM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。