A novel biomarker of fibrofatty replacement in dystrophinopathies identified by integrating transcriptome, magnetic resonance imaging, and pathology data

通过整合转录组、磁共振成像和病理学数据鉴定出肌营养不良症中纤维脂肪替代的新型生物标志物

阅读:5
作者:Zhihao Xie, Chang Liu, Chengyue Sun, Yanyu Lu, Shiyi Wu, Yilin Liu, Qi Wang, Yalan Wan, Yikang Wang, Meng Yu, Lingchao Meng, Jianwen Deng, Wei Zhang, Zhaoxia Wang, Chunxia Yang, Yun Yuan, Zhiying Xie

Background

We aimed to analyse genome-wide transcriptome differences between Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) patients and identify biomarkers that correlate well with muscle magnetic resonance imaging (MRI) and histological fibrofatty replacement in both patients, which have not been reported.

Conclusions

We identify CDKN2A expression as a novel biomarker of fibrofatty replacement, which might be a new target for antifibrotic therapy in dystrophinopathies.

Methods

One hundred and one male patients with dystrophinopathies (55 DMD and 46 BMD) were enrolled. Muscle-derived genome-wide RNA-sequencing was performed in 31 DMD patients, 29 BMD patients, and 11 normal controls. Fibrofatty replacement was scored on muscle MRI and histological levels in all patients. A unique pipeline, single-sample gene set enrichment analysis combined with Spearman's rank correlations (ssGSEA-Cor) was developed to identify the most correlated gene signature for fibrofatty replacement. Quantitative real-time PCR (qRT-PCR) analysis, western blot analysis, and single-nucleus RNA-sequencing (snRNA-seq) were performed in the remaining patients to validate the most correlated gene signature.

Results

Comparative transcriptomic analysis revealed that 31 DMD muscles were characterized by a significant increase of inflammation/immune response and extracellular matrix remodelling compared with 29 BMD muscles (P < 0.05). The ssGSEA-Cor pipeline revealed that the gene set of CDKN2A and CDKN2B was the most correlated gene signature for fibrofatty replacement (histological rs = 0.744, P < 0.001; MRI rs = 0.718, P < 0.001). Muscle qRT-PCR confirmed that CDKN2A mRNA expression in both 15 DMD (median = 25.007, P < 0.001) and 12 BMD (median = 5.654, P < 0.001) patients were significantly higher than that in controls (median = 1.101), while no significant difference in CDKN2B mRNA expression was found among DMD, BMD, and control groups. In the 27 patients, muscle CDKN2A mRNA expression respectively correlated with muscle MRI (rs = 0.883, P < 0.001) and histological fibrofatty replacement (rs = 0.804, P < 0.001) and disease duration (rs = 0.645, P < 0.001) and North Star Ambulatory Assessment total scores (rs = -0.698, P < 0.001). Muscle western blot analysis confirmed that both four DMD (median = 2.958, P < 0.05) and four BMD (median = 1.959, P < 0.01) patients had a significantly higher level of CDKN2A protein expression than controls (median = 1.068). The snRNA-seq analysis of two DMD muscles revealed that CDKN2A was mainly expressed in fibro-adipogenic progenitors, satellite cells, and myoblasts. Conclusions: We identify CDKN2A expression as a novel biomarker of fibrofatty replacement, which might be a new target for antifibrotic therapy in dystrophinopathies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。