The FMR1 promoter is selectively hydroxymethylated in primary neurons of fragile X syndrome patients

FMR1 启动子在脆性 X 综合征患者的原代神经元中被选择性羟甲基化

阅读:5
作者:Rustam Esanov, Nadja S Andrade, Sarah Bennison, Claes Wahlestedt, Zane Zeier

Abstract

Fragile X syndrome (FXS) results from a repeat expansion mutation near the FMR1 gene promoter and is the most common form of heritable intellectual disability and autism. Full mutations larger than 200 CGG repeats trigger FMR1 heterochromatinization and loss of gene expression, which is primarily responsible for the pathological features of FXS . In contrast, smaller pre-mutations of 55–200 CGG are associated with FMR1 overexpression and Fragile X-associated tremor/ataxia syndrome (FXTAS), a late-onset neurodegenerative condition. While the role of 5-methylcytosine (5mC) in FMR1 gene silencing has been studied extensively, the role of 5-hydroxymethylation (5hmC), a newly discovered epigenetic mark produced through active DNA demethylation, has not been previously investigated in FXS neurons. Here, we used two complementary epigenetic assays, 5hmC sensitive restriction digest and ten-eleven translocation-assisted bisulfite pyrosequencing, to quantify FMR1 5mC and 5hmC levels. We observed increased levels of 5hmC at the FMR1 promoter in FXS patient brains with full-mutations relative to pre-mutation carriers and unaffected controls. In addition, we found that 5hmC enrichment at the FMR1 locus in FXS cells is specific to neurons by utilizing a nuclei sorting technique to separate neuronal and glial DNA fractions from post-mortem brain tissues. This FMR1 5hmC enrichment was not present in cellular models of FXS including fibroblasts, lymphocytes and reprogrammed neurons, indicating they do not fully recapitulate this epigenetic feature of disease. Future studies could investigate the potential to leverage this epigenetic pathway to restore FMR1 expression and discern whether levels of 5hmC correlate with phenotypic severity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。