Background
Diabetic nephropathy (DN) is a common kidney disease in diabetic patients. Long non-coding RNA maternally expressed gene 3 (MEG3) and microRNA (miR)-23c are reported to be implicated in DN development. Nevertheless, it is unclear that the molecular mechanism between MEG3 and miR-23c in DN remains unclear.
Conclusion
MEG3 regulated HMC injury via regulation of the miR-23c/LIN28B axis in DN, which can help us better understand the mechanism of DN mediated by MEG3.
Methods
Human mesangial cells (HMCs) were treated with high glucose (HG) to simulate the DN status in vitro. Expression of MEG3 and miR-23c was measured. Effects of MEG3 silencing on HG-stimulated HMC injury were determined. The relationship between MEG3 and miR-23c was verified by the dual-luciferase reporter and RNA immunoprecipitation assays.
Results
MEG3 was overexpressed in serums from DN patients and HG-stimulated HMCs. MEG3 knockdown weakened HG-stimulated HMC proliferation, extracellular matrix (ECM) accumulation, and inflammation. MEG3 regulated lin-28 homolog B (LIN28B) expression through adsorbing miR-23c. MiR-23c inhibitor reversed MEG3 knockdown-mediated effects on HG-stimulated HMC proliferation, ECM accumulation, and inflammation. LIN28B overexpression overturned miR-23c mimic-mediated effects on HG-stimulated HMC proliferation, ECM accumulation, and inflammation.
