Role of the endothelial reverse mode sodium-calcium exchanger in the dilation of the rat middle cerebral artery during hypoosmotic hyponatremia

内皮逆向钠钙交换器在低渗性低钠血症时大鼠大脑中动脉扩张中的作用

阅读:2
作者:Katarzyna Klapczyńska, Marta Aleksandrowicz, Ewa Koźniewska

Abstract

A decrease in serum sodium ion concentration below 135 mmol L-1 is usually accompanied by a decrease in plasma osmolality (hypoosmotic hyponatremia) and leads to the disorder of intracranial homeostasis mainly due to cellular swelling. Recently, using an in vitro model of hypoosmotic hyponatremia, we have found that a decrease in sodium ion concentration in the perfusate to 121 mmol L-1 relaxes the isolated rat middle cerebral artery (MCA). The aim of the present study was to explore the mechanism responsible for this relaxation. Isolated, pressurized, and perfused MCAs placed in a vessel chamber were subjected to a decrease in sodium ion concentration to 121 mmol L-1. Changes in the diameter of the vessels were monitored with a video camera. The removal of the endothelium and inhibition of nitric oxide-dependent signaling or the reverse mode sodium-calcium exchanger (NCX) were used to study the mechanism of the dilation of the vessel during hyponatremia. The dilation of the MCA (19 ± 5%, p < 0.005) in a low-sodium buffer was absent after removal of the endothelium or administration of the inhibitor of the reverse mode of sodium-calcium exchange and was reversed to constriction after the inhibition of nitric oxide (NO)/cGMP signaling. The dilation of the middle cerebral artery of the rat in a 121 mmol L-1 Na+ buffer depends on NO signaling and reverse mode of sodium-calcium exchange. These results suggest that constriction of large cerebral arteries with impaired NO-dependent signaling may be observed in response to hypoosmotic hyponatremia.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。