Long non-coding RNA SNHG1 promotes fibroblast-to-myofibroblast transition during the development of pulmonary fibrosis induced by silica particles exposure

长链非编码 RNA SNHG1 在二氧化硅颗粒暴露诱发的肺纤维化发展过程中促进成纤维细胞向肌成纤维细胞的转变

阅读:4
作者:Qiuyun Wu, Biyang Jiao, Wenwen Gui, Qianyi Zhang, Feng Wang, Lei Han

Abstract

Inhaling silica dust in the environment can cause progressive pulmonary fibrosis, then silicosis. Silicosis is the most harmful occupational disease in the world, so the study of the mechanism is of great significance for the prevention and treatment of silicosis. Long non-coding RNAs (lncRNAs) are important players in the pathological process of fibrotic diseases. However, the function of specific lncRNA in regulating pulmonary fibrosis remains elusive. In this study, a mouse model of pulmonary fibrosis via intratracheal instillation of silica particles was established, and the differential expression of lnc-SNHG1 and miR-326 in lung tissues and TGF-β1-treated fibroblasts was detected by the qRT-PCR method. Short interfering RNA (siRNA) and plasmid were designed for knockdown or overexpression of lnc-SNHG1 in fibroblasts. MiRNA simulant was designed for overexpression of miR-326 in vivo and in vitro. Dual-luciferase reporter system, immunofluorescence, western blot, wound healing and transwell assay were performed to investigate the function and the underlying mechanisms of lnc-SNHG1. As a result, we found that lnc-SNHG1 was highly expressed in fibrotic lung tissues of mice and TGF-β1-treated fibroblasts. Moreover, the high expression of lnc-SNHG1 facilitated the migration and invasion of fibroblasts and the secretion of fibrotic molecules, while the low expression of lnc-SNHG1 exerted the opposite effects. Further mechanism studies showed that miR-326 was the potential target of lnc-SNHG1, and there is a negative correlation between the expression levels of lnc-SNHG1 and miR-326. Combined with mitigating fibrotic effects of miR-326 in a mouse model of silica particles exposure, we revealed that lnc-SNHG1 significantly sponged miR-326 and facilitated the expression of SP1, thus accelerating fibroblast-to-myofibroblast transition and synergistically promoting the development of pulmonary fibrosis. Our study uncovered a key mechanism by which lnc-SNHG1 regulated pulmonary fibrosis through miR-326/SP1 axis, and lnc-SNHG1 is a potential target for the prevention and treatment of silicosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。