SERS-PCR assays of SARS-CoV-2 target genes using Au nanoparticles-internalized Au nanodimple substrates

使用金纳米粒子内化的金纳米凹坑基底对 SARS-CoV-2 靶基因进行 SERS-PCR 检测

阅读:4
作者:Yixuan Wu, Hajun Dang, Sung-Gyu Park, Lingxin Chen, Jaebum Choo

Abstract

The reverse transcription-polymerase chain reaction (RT-PCR) method has been adopted worldwide to diagnose severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although this method has good sensitivity and specificity, there is a need to develop a more rapid diagnostic technology, given the virus's rapid spread. However, the RT-PCR method takes a long time to diagnose SARS-CoV-2 because of the required thermocycling steps. Therefore, we developed a surface-enhanced Raman scattering (SERS)-PCR detection method using an AuNP-internalized Au nanodimple substrate (AuNDS) to shorten the diagnosis time by reducing the number of thermocycling steps needed to amplify the DNA. For the representative target markers, namely, the envelope protein (E) and RNA-dependent RNA polymerase (RdRp) genes of SARS-CoV-2, 25 RT-PCR thermocycles are required to reach a detectable threshold value, while 15 cycles are needed for magnetic bead-based SERS-PCR when the initial DNA concentration was 1.00× 105 copies/μL. However, only 8 cycles are needed for the AuNDS-based SERS-PCR. The corresponding detectable target DNA concentrations were 3.36 × 1012, 3.28 × 109, and 2.56 × 107 copies/μL, respectively. Therefore, AuNDS-based SERS-PCR is seen as being a new molecular diagnostic platform that can shorten the time required for the thermocycling steps relative to the conventional RT-PCR.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。